首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper we describe a new approach to measure pH differences in microfluidic devices and demonstrated acidification rate measurements in on-chip cell culture systems with nl wells. We use two miniaturized identical iridium oxide (IrOx) thin film electrodes (20 micromx400 microm), one as a quasi-reference electrode, the other as a sensing electrode, placed in two confluent compartments on chip. The IrOx electrodes were deposited onto microfabricated platinum (Pt) electrodes simultaneously using electrodeposition. Incorporating the electrodes into a microfluidic device allowed us to expose each electrode to a different solution with a pH difference of one pH unit maintaining a confluent connection between the electrodes. In this configuration, we obtained a reproducible voltage difference between the two IrOx thin film electrodes, which corresponds to the electrode sensitivities of -70 mV/pH at 22 degrees C. In order to measure the acidification rate of cells in nl cell culture volumes we placed one IrOx thin film electrode in the perfusion channel as a quasi-reference electrode and the other in the cell culture volume. We obtained an acidification rate of 0.19+/-0.02 pH/min for fibroblast cells using a stop flow protocol. These results show that we can use two identical miniaturized microfabricated IrOx electrodes to measure pH differences to monitor the metabolic activity of cell cultures on chip. Furthermore, our approach can also be applied in biosensor or bioanalytical applications.  相似文献   

3.
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.  相似文献   

4.
This paper deals with the development of a microfluidic biochip for the exposure of living cells to nanosecond pulsed electric fields (nsPEF). When exposed to ultra short electric pulses (typical duration of 3-10ns), disturbances on the plasma membrane and on the intra cellular components occur, modifying the behavioral response of cells exposed to drugs or transgene vectors. This phenomenon permits to envision promising therapies. The presented biochip is composed of thick gold electrodes that are designed to deliver a maximum of energy to the biological medium containing cells. The temporal and spectral distributions of the nsPEF are considered for the design of the chip. In order to validate the fabricated biochip ability to orient the pulse towards the cells flowing within the exposition channels, a frequency analysis is provided. High voltage measurements in the time domain are performed to characterize the amplitude and the shape of the nsPEF within the exposition channels and compared to numerical simulations achieved with a 3D Finite-Difference Time-Domain code. We demonstrate that the biochip is adapted for 3 ns and 10 ns pulses and that the nsPEF are homogenously applied to the biological cells regardless their position along the microfluidic channel. Furthermore, biological tests performed on the developed microfluidic biochip permit to prove its capability to permeabilize living cells with nanopulses. To the best of our knowledge, we report here the first successful use of a microfluidic device optimized for the achievement and real time observation of the nanoporation of living cells.  相似文献   

5.
Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process.cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles.Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing crossover frequency of a particle or cell, the frequency at which the dielectrophoretic force is zero. Finally, we demonstrate the use of this technique for sorting a mixture of ovarian cancer cells and fluorescing microspheres (beads).  相似文献   

6.
Development of a microfluidic device equipped with micromesh for detection of Cryptosporidium parvum oocyst was reported. A micromesh consisting of 10 x 10 cavities was microfabricated on the stainless steel plate by laser ablation. Each cavity size, approximately 2.7 microm in diameter, was adopted to capture a single C. parvum oocyst. Under negative pressure operation, suspensions containing microbeads or C. parvum oocysts flowed into the microchannel. Due to strong non-specific adsorption of microbeads onto the PDMS microchannel surface during sample injection, the surface was treated with air plasma, followed by treatment with 1% sodium dodecyl sulfate (SDS) solution. This process reduced the non-specific adsorption of microbeads on the microchannel to 10% or less in comparison to a non-treated microchannel. This microfluidic device equipped with the SUS micromesh was further applied for the capture of C. parvum oocysts. Trapped C. parvum oocysts were visualized by staining with FITC-labeled anti-C. parvum oocyst antibody on a micromesh and counted under fluoroscopic observation. The result obtained by our method was consistent with that obtained by direct immunofluorescence assay coupled with immunomagnetic separation (DFA-IMS) method, indicating that the SUS micromesh is useful for counting of C. parvum oocysts. The newly designed microfluidic device exploits a geometry that allowed for the entrapment of oocysts on the micromesh while providing the rapid introduction of a series of reagents and washes through the microfluidic structure. Our data indicate that this microfluidic device is useful for high-throughput counting of C. parvum oocysts from tap water sample.  相似文献   

7.
Release of neurotransmitters and hormones by calcium regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20 μm×300 μm) and utilized these for quantitative detection of catecholamine release from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0-400 μM, with a sensitivity of 23.1±0.5 mA/M mm(2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic device and stimulated by rapid perfusion with high potassium (50mM) containing Tyrode's solution at a flow rate of 1 nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the cell culture volume of ~52 μM. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of chromaffin cells.  相似文献   

8.
Several bacterial species possess the ability to attach to surfaces and colonize them in the form of thin films called biofilms. Biofilms that grow in porous media are relevant to several industrial and environmental processes such as wastewater treatment and CO2 sequestration. We used Pseudomonas fluorescens, a Gram-negative aerobic bacterium, to investigate biofilm formation in a microfluidic device that mimics porous media. The microfluidic device consists of an array of micro-posts, which were fabricated using soft-lithography. Subsequently, biofilm formation in these devices with flow was investigated and we demonstrate the formation of filamentous biofilms known as streamers in our device. The detailed protocols for fabrication and assembly of microfluidic device are provided here along with the bacterial culture protocols. Detailed procedures for experimentation with the microfluidic device are also presented along with representative results.  相似文献   

9.
A simple and rapid flow-based multioperation immunoassay for heavy metals using a microfluidic device was developed. The antigen-immobilized microparticles in a sub-channel were introduced as the solid phase into a main channel structures through a channel flow mechanism and packed into a detection area enclosed by dam-like structures in the microfluidic device. A mixture of a heavy metal and a gold nanoparticle-labeled antibody was made to flow toward the corresponding metal through the main channel and make brief contact with the solid phase. A small portion of the free antibody was captured and accumulated on the packed solid phase. The measured absorbance of the gold label was proportional to the free antibody portion and, thus, to the metal concentration. Each of the monoclonal antibodies specific for cadmium-EDTA, chromium-EDTA, or lead-DTPA was applied to the single-channel microfluidic device. Under optimized conditions of flow rate, volume, and antibody concentration, the theoretical (antibody K(d)-limited) detection levels of the three heavy metal species were achieved within only 7 min. The dynamic range for cadmium, chromium, and lead was 0.57-60.06 ppb, 0.03-0.97 ppb, and 0.04-5.28 ppb, respectively. An integrated microchannel device for simultaneous multiflow was also successfully developed and evaluated. The multiplex cadmium immunoassay of four samples was completed within 8 min for a dynamic range of 0.42-37.48 ppb. Present microfluidic heavy metal immunoassays satisfied the Japanese environmental standard for cadmium, chromium and, lead, which provided in the soil contamination countermeasures act.  相似文献   

10.
This paper presents a microfluidic chip capable of performing precise continuous pH measurements in an automatic mode. The chip is fabricated using micro-electro-mechanical-systems (MEMS)-based techniques and incorporates polydimethylsiloxane (PDMS) microstructures, pH-sensing electrodes and pneumatic fluid-control devices. Through its enhanced microchannel design and use of pneumatic fluid-control devices, the microfluidic chip reduces the dead volume of the sample and increases the pumping rate. The maximum pumping rate of the developed micro-pump is 28 microL/min at an air pressure of 10 psi and a driving frequency of 10 Hz. The total sample volume consumed in each sensing operation is just 0.515 microL. As a result, the developed chip reduces the sample volume compared to conventional large-scale pH-sensing systems. The microfluidic chip employs the electrochemical sensing method to conduct precise pH level measurements. The sensing electrodes are fabricated by sputtering a layer of SiO(2)-LiO(2)-BaO-TiO(2)-La(2)O(3) (SLBTLO) onto platinum (Pt) electrodes and the pH value of the sample is evaluated by measuring the potential difference between the sensing electrodes and a reference electrode. Additionally, the integration of the microfluidic chip with a pneumatic fluid-control device facilitates automatic sample injection and a continuous sensing operation. The developed system provides a valuable tool with which to examine pH values in a wide range of biomedical and industrial applications.  相似文献   

11.
He M  Herr AE 《Nature protocols》2010,5(11):1844-1856
This protocol describes regional photopatterning of polyacrylamide gels in glass microfluidic devices as a platform for seamless integration of multiple assay steps. The technology enables rapid, automated protein immunoblotting, demonstrated in this study for native western blotting. The fabrication procedure is straightforward and requires approximately 3 h from the start of gel photopatterning to completion of native protein western blotting, a substantial time savings over slab-gel immunoblotting. The assay itself requires less than 5 min. Importantly, all assay stages are programmably controlled by a high-voltage power supply and monitored by an epifluorescence microscope equipped with a charge-coupled device camera. Our approach overcomes severe limitations associated with conventional immunoblotting, including multiple steps requiring manual intervention, low throughput and substantial consumption of reagents. We also describe a simple chemical recycling protocol so that glass chips can be reused. The fabrication technique described forms the basis for a diverse suite of bioanalytical tools, including DNA/RNA blotting and multidimensional separations.  相似文献   

12.
Here, we demonstrate a simple method for the rapid production of size-controllable, monodisperse, W/O microdroplets using a capillary-based centrifugal microfluidic device. W/O microdroplets have recently been used in powerful methods that enable miniaturized chemical experiments. Therefore, developing a versatile method to yield monodisperse W/O microdroplets is needed. We have developed a method for generating monodisperse W/O microdroplets based on a capillary-based centrifugal axisymmetric co-flowing microfluidic device. We succeeded in controlling the size of microdroplets by adjusting the capillary orifice. Our method requires equipment that is easier-to-use than with other microfluidic techniques, requires only a small volume (0.1-1 µl) of sample solution for encapsulation, and enables the production of hundreds of thousands number of W/O microdroplets per second. We expect this method will assist biological studies that require precious biological samples by conserving the volume of the samples for rapid quantitative analysis biochemical and biological studies.  相似文献   

13.
Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications.  相似文献   

14.
We have developed a microfluidic device consisting of a gold film working electrode modified with lactate oxidase and Os-poly(vinylpyridine) mediator containing horseradish peroxide, and reference and counter electrodes in a microflow detection channel separated by a microdialysis membrane from another microflow channel used for sample injection. The dialysis membrane is cellulose with a molecular weight cut off of 10 kDa. We achieved control over a wide recovery rate range of 3-94% because the device is capable of controlling both flow rates in the dual thin-layer channels. We were able to measure the lactate concentration in blood samples within a few minutes without any pretreatment because biomolecules are simultaneously separated by molecular weight and detected in the device. We achieved quantitative and reproducible measurements of the lactate concentration in blood samples, and obtained a relative standard deviation of 1.5% (n = 8). With our device, the lactate concentration in dog whole blood was measured with high stability without any pretreatment.  相似文献   

15.
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had previously been modified to express green fluorescent protein (GFP). In our design, the cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that local field strength of 1000-1500 V/cm was required for nearly 100% cell death. This threshold field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field [Lee, S.W., Tai, Y.C., 1999. Sens. Actuators A: Phys. 73, 74-79]. Cell lysis was detected by both plate count and fluorescence spectroscopy. The cell membrane was completely disintegrated in the lysis section of the microfluidic device, when the field strength was higher than 2000 V/cm. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of bacterial cells for chemical analysis of intracellular contents such as DNA and proteins. The application of continuous dc voltage greatly simplified the instrumentation compared to devices using electrical pulses for similar purposes. In principle, the same approach can also be applied for lysis of mammalian cells and electroporative transfection.  相似文献   

16.
The Coulter technique enables rapid analysis of particles or cells suspended in a fluid stream. In this technique, the cells are suspended in an electrically conductive solution, which is hydrodynamically focused by nonconducting sheath flows. The cells produce a characteristic voltage signal when they interrupt an electrical path. The population and size of the cells can be obtained through analyzing the voltage signal. In a microfluidic Coulter counter device, the hydrodynamic focusing technique is used to position the conducting sample stream and the cells and also to separate close cells to generate distinct signals for each cell and avoid signal jam. The performance of hydrodynamic focusing depends on the relative flow ratio between the sample stream and sheath stream. We use a numerical approach to study the hydrodynamic focusing in a microfluidic Coulter counter device. In this approach, the flow field is described by solving the incompressible Navier-Stokes equations. The sample stream concentration is modeled by an advection-diffusion equation. The motion of the cells is governed by the Newton-Euler equations of motion. Particle motion through the flow field is handled using an overlapping grid technique. A numerical model for studying a microfluidic Coulter counter has been validated. Using the model, the impact of relative flow rate on the performance of hydrodynamic focusing was studied. Our numerical results show that the position of the sample stream can be controlled by adjusting the relative flow rate. Our simulations also show that particles can be focused into the stream and initially close particles can be separated by the hydrodynamic focusing. From our study, we conclude that hydrodynamic focusing provides an effective way to control the position of the sample stream and cells and it also can be used to separate cells to avoid signal jam.  相似文献   

17.
We describe here a new in vitro protocol for structuring cardiac cell cultures to mimic important aspects of the in vivo ventricular myocardial phenotype by controlling the location and mechanical environment of cultured cells. Microlithography is used to engineer microstructured silicon metal wafers. Those are used to fabricate either microgrooved silicone membranes or silicone molds for microfluidic application of extracellular matrix proteins onto elastic membranes (involving flow control at micrometer resolution). The physically or microfluidically structured membranes serve as a cell culture growth substrate that supports cell alignment and allows the application of stretch. The latter is achieved with a stretching device that can deliver isotropic or anisotropic stretch. Neonatal ventricular cardiomyocytes, grown on these micropatterned membranes, develop an in vivo-like morphology with regular sarcomeric patterns. The entire process from fabrication of the micropatterned silicon metal wafers to casting of silicone molds, microfluidic patterning and cell isolation and seeding takes approximately 7 days.  相似文献   

18.
Sample flow switching techniques on microfluidic chips   总被引:1,自引:0,他引:1  
This paper presents an experimental investigation into electrokinetically focused flow injection for bio-analytical applications. A novel microfluidic device for microfluidic sample handling is presented. The microfluidic chip is fabricated on glass substrates using conventional photolithographic and chemical etching processes and is bonded using a high-temperature fusion method. The proposed valve-less device is capable not only of directing a single sample flow to a specified output port, but also of driving multiple samples to separate outlet channels or even to a single outlet to facilitate sample mixing. The experimental results confirm that the sample flow can be electrokinetically pre-focused into a narrow stream and guided to the desired outlet port by means of a simple control voltage model. The microchip presented within this paper has considerable potential for use in a variety of applications, including high-throughput chemical analysis, cell fusion, fraction collection, sample mixing, and many other applications within the micro-total-analysis systems field.  相似文献   

19.
The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells'' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells.  相似文献   

20.
We have demonstrated the fabrication of a two-level microfluidic device that can be easily integrated with existing electrophysiology setups. The two-level microfluidic device is fabricated using a two-step standard negative resist lithography process. The first level contains microchannels with inlet and outlet ports at each end. The second level contains microscale circular holes located midway of the channel length and centered along with channel width. Passive pumping method is used to pump fluids from the inlet port to the outlet port. The microfluidic device is integrated with off-the-shelf perfusion chambers and allows seamless integration with the electrophysiology setup. The fluids introduced at the inlet ports flow through the microchannels towards the outlet ports and also escape through the circular openings located on top of the microchannels into the bath of the perfusion. Thus the bottom surface of the brain slice placed in the perfusion chamber bath and above the microfluidic device can be exposed with different neurotransmitters. The microscale thickness of the microfluidic device and the transparent nature of the materials [glass coverslip and PDMS (polydimethylsiloxane)] used to make the microfluidic device allow microscopy of the brain slice. The microfluidic device allows modulation (both spatial and temporal) of the chemical stimuli introduced to the brain slice microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号