首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sexual reproduction is commonly assumed to occur in the vast majority of diatoms due to the intimate association of this process with cell size control. Surprisingly, however, little is known about the impact of sexual events on diatom population dynamics. The Sig1 gene is strongly upregulated during sexual reproduction in the centric diatom Thalassiosira weissflogii and has been hypothesized to encode a protein involved in gamete recognition. In the present study, degenerate PCR primers were designed and used to amplify a portion of Sig1 from three closely related species in the cosmopolitan genus Thalassiosira, Thalassiosira oceanica, Thalassiosira guillardii, and Thalassiosira pseudonana. Identification of Sig1 in these three additional species facilitated development of this gene as a molecular marker for diatom sexual events. Examination of the new sequences indicated that multiple copies of Sig1 are probably present in the genome. Moreover, compared to the housekeeping gene β-tubulin, the Sig1 genes of isolates of T. weissflogii collected from different regions of the Atlantic and Pacific oceans displayed high levels of divergence. The Sig1 genes of the four closely related Thalassiosira species also displayed high levels of sequence divergence compared to the levels observed with a second gene, Fcp, probably explaining why Sig1 could not be amplified from more distantly related species. The high levels of sequence divergence both within and between species suggest that Sig1 is rapidly evolving in a manner reminiscent of the manner observed in other genes that encode gamete recognition proteins. A simple model is presented for Sig1 evolution and the implications of such a rapidly evolving sexual reproduction gene for diatom speciation and population dynamics.  相似文献   

2.
We constructed a complete physical map and a partial gene map of the chloroplast genome of Cyclotella meneghiniana Kützing clone 1020-1a (Bacillariophyceae). The 128-kb circular molecule contains a 17-kb inverted repeat, which divides the genome into single copy regions of65 kb and 29 kb. This is the largest genome and inverted repeat found in any diatom examined to date. In addition to the 16S and 23S ribosomal RNA genes, the inverted repeat contains both the ndhD gene (as yet unexamined in other diatoms) and the psbA gene (located similarly in one of two other examined diatoms). The Cyclotella chloroplast genome exists as two equimolar populations of inversion isomers that differ in the relative orientation of their single copy sequences. This inversion heterogeneity presumably results from intramolecular recombination within the inverted repeat. For the first time, we map the ndhD, psaC, rpofi, rpoCl, and rpoC2 genes to the chloroplast genome of a chlorophyll c-containing alga. While the Cyclotella chloroplast genome retains some prokaryotic and land plant gene clusters and operons, it contains a highly rearranged gene order in the large and small single copy regions compared to all other examined diatom, algal, and land plant chloroplast genomes.  相似文献   

3.
The enormous species diversity of diatoms correlates with the remarkable range of cell sizes in this group. Nuclear DNA content relates fundamentally to cell volume in other eukaryotic cells. The relationship of cell volume to G1 DNA content was determined among selected members of the genus Thalassiosira, one of the most species‐rich and well‐studied centric diatom genera. Both minimum and maximum species‐specific cell volume correlated positively with G1 DNA content. Phylogeny based on 5.8 S and ITS rDNA sequences indicated that multiple changes in G1 DNA content and cell volume occurred in Thalassiosira evolution, leading to a 1,000‐fold range in both parameters in the group. Within the Thalassiosira weissflogii (Grunow) G. A. Fryxell et Grunow species complex, G1 DNA content varied 3‐fold: differences related to geographic origin and time since isolation; doubling and tripling of G1 DNA content occurred since isolation in certain T. weissflogii isolates; and subcultures of T. weissflogii CCMP 1336 diverged in DNA content by 50% within 7 years of separation. Actin, β‐tubulin, and Spo11/TopVIA genes were selected for quantitative PCR estimation of haploid genome size in subclones of selected T. weissflogii isolates because they occur only once in the T. pseudonana Hasle et Heimdal genome. Comparison of haploid genome size estimates with G1 DNA content suggested that the most recent T. weissflogii isolate was diploid, whereas other T. weissflogii isolates appeared to be polyploid and/or aneuploid. Aberrant meiotic and mitotic cell divisions were observed, which might relate to polyploidization. The structural flexibility of diatom genomes has important implications for their evolutionary diversification and stability during laboratory maintenance.  相似文献   

4.
An intriguing feature of the diatom life cycle is that sexual reproduction and the generation of genetic diversity are coupled to the control of cell size. A PCR-based cDNA subtraction technique was used to identify genes that are expressed as small cells of the centric diatom Thalassiosira weissflogii initiate gametogenesis. Ten genes that are up-regulated during the early stages of sexual reproduction have been identified thus far. Three of the sexually induced genes, Sig1, Sig2, and Sig3, were sequenced to completion and are members of a novel gene family. The three polypeptides encoded by these genes possess different molecular masses and charges but display many features in common: they share five highly conserved domains; they each contain three or more cysteine-rich epithelial growth factor (EGF)-like repeats; and they each display homology to the EGF-like region of the vertebrate extracellular matrix glycoprotein tenascin X. Interestingly, the five conserved domains appear in the same order in each polypeptide but are separated by variable numbers of nonconserved amino acids. SIG1 and SIG2 display putative regulatory domains within the nonconserved regions. A calcium-binding, EF-hand motif is found in SIG1, and an ATP/GTP binding motif is present in SIG2. The striking similarity between the SIG polypeptides and extracellular matrix components commonly involved in cell-cell interactions suggests that the SIG polypeptides may play a role in sperm-egg recognition. The SIG polypeptides are thus important molecular targets for determining when and where sexual reproduction occurs in the field.  相似文献   

5.
The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta) is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta.  相似文献   

6.

Background

The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer.

Methodology/Principal Findings

To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP.

Conclusions/Significance

We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.  相似文献   

7.
Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus.  相似文献   

8.
9.
10.
In crosses of wild and cultivated peas (Pisum sativum L.), nuclear-cytoplasmic incompatibility frequently occurs manifested as decreased pollen fertility, male gametophyte lethality, sporophyte lethality. High-throughput sequencing of plastid genomes of one cultivated and four wild pea accessions differing in cross-compatibility was performed. Candidate genes for involvement in the nuclear-plastid conflict were searched in the reconstructed plastid genomes. In the annotated Medicago truncatula genome, nuclear candidate genes were searched in the portion syntenic to the pea chromosome region known to harbor a locus involved in the conflict. In the plastid genomes, a substantial variability of the accD locus represented by nucleotide substitutions and indels was found to correspond to the pattern of cross-compatibility among the accessions analyzed. Amino acid substitutions in the polypeptides encoded by the alleles of a nuclear locus, designated as Bccp3, with a complementary function to accD, fitted the compatibility pattern. The accD locus in the plastid genome encoding beta subunit of the carboxyltransferase of acetyl-coA carboxylase and the nuclear locus Bccp3 encoding biotin carboxyl carrier protein of the same multi-subunit enzyme were nominated as candidate genes for main contribution to nuclear-cytoplasmic incompatibility in peas. Existence of another nuclear locus involved in the accD-mediated conflict is hypothesized.  相似文献   

11.
Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.  相似文献   

12.
Aggregation of algae, mainly diatoms, is an important process in marine systems leading to the settling of particulate organic carbon predominantly in the form of marine snow. Exudation products of phytoplankton form transparent exopolymer particles (TEP), which acts as the glue for particle aggregation. Heterotrophic bacteria interacting with phytoplankton may influence TEP formation and phytoplankton aggregation. This bacterial impact has not been explored in detail. We hypothesized that bacteria attaching to Thalassiosira weissflogii might interact in a yet-to-be determined manner, which could impact TEP formation and aggregate abundance. The role of individual T. weissflogii-attaching and free-living new bacterial isolates for TEP production and diatom aggregation was investigated in vitro. T. weissflogii did not aggregate in axenic culture, and striking differences in aggregation dynamics and TEP abundance were observed when diatom cultures were inoculated with either diatom-attaching or free-living bacteria. The data indicated that free-living bacteria might not influence aggregation whereas bacteria attaching to diatom cells may increase aggregate formation. Interestingly, photosynthetically inactivated T. weissflogii cells did not aggregate regardless of the presence of bacteria. Comparison of aggregate formation, TEP production, aggregate sinking velocity and solid hydrated density revealed remarkable differences. Both, photosynthetically active T. weissflogii and specific diatom-attaching bacteria were required for aggregation. It was concluded that interactions between heterotrophic bacteria and diatoms increased aggregate formation and particle sinking and thus may enhance the efficiency of the biological pump.  相似文献   

13.

Background

Nucleomorphs are residual nuclei derived from eukaryotic endosymbionts in chlorarachniophyte and cryptophyte algae. The endosymbionts that gave rise to nucleomorphs and plastids in these two algal groups were green and red algae, respectively. Despite their independent origin, the chlorarachniophyte and cryptophyte nucleomorph genomes share similar genomic features such as extreme size reduction and a three-chromosome architecture. This suggests that similar reductive evolutionary forces have acted to shape the nucleomorph genomes in the two groups. Thus far, however, only a single chlorarachniophyte nucleomorph and plastid genome has been sequenced, making broad evolutionary inferences within the chlorarachniophytes and between chlorarachniophytes and cryptophytes difficult. We have sequenced the nucleomorph and plastid genomes of the chlorarachniophyte Lotharella oceanica in order to gain insight into nucleomorph and plastid genome diversity and evolution.

Results

The L. oceanica nucleomorph genome was found to consist of three linear chromosomes totaling ~610 kilobase pairs (kbp), much larger than the 373 kbp nucleomorph genome of the model chlorarachniophyte Bigelowiella natans. The L. oceanica plastid genome is 71 kbp in size, similar to that of B. natans. Unexpectedly long (~35 kbp) sub-telomeric repeat regions were identified in the L. oceanica nucleomorph genome; internal multi-copy regions were also detected. Gene content analyses revealed that nucleomorph house-keeping genes and spliceosomal intron positions are well conserved between the L. oceanica and B. natans nucleomorph genomes. More broadly, gene retention patterns were found to be similar between nucleomorph genomes in chlorarachniophytes and cryptophytes. Chlorarachniophyte plastid genomes showed near identical protein coding gene complements as well as a high level of synteny.

Conclusions

We have provided insight into the process of nucleomorph genome evolution by elucidating the fine-scale dynamics of sub-telomeric repeat regions. Homologous recombination at the chromosome ends appears to be frequent, serving to expand and contract nucleomorph genome size. The main factor influencing nucleomorph genome size variation between different chlorarachniophyte species appears to be expansion-contraction of these telomere-associated repeats rather than changes in the number of unique protein coding genes. The dynamic nature of chlorarachniophyte nucleomorph genomes lies in stark contrast to their plastid genomes, which appear to be highly stable in terms of gene content and synteny.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-374) contains supplementary material, which is available to authorized users.  相似文献   

14.
The phylogenetic positions of the families Campynemataceae and Corsiaceae within the order Liliales remains unclear. To date, molecular data from the plastid genome of Corsiaceae has been obtained exclusively from Arachnitis, for which alignment and phylogenetic inference has proved difficult. The extent of gene conservation among mycoheterotrophic species within Corsiaceae remains unknown. To clarify the phylogenetic position of Campynemataceae and Corsiaceae within Liliales, functional plastid-coding genes of species representing both families have been analyzed. Examination of two phylogenetic data sets of plastid genes employing parsimony, maximum-likelihood, and Bayesian inference methods strongly supported both families forming a basal clade to the remaining taxa of Liliales. The first data set consists of five functional plastid-encoded genes (matK, rps7, rps2, rps19, and rpl2) sequenced from Corsia dispar (Corsiaceae). The data set included 31 species representing all families within Liliales, as well as selected orders that are related closely to Liliales (10 outgroup species from Asparagales, Dioscoreales, and Pandanales). The second phylogenetic analysis was based on 75 plastid genes. This data set included 18 species from Liliales, representing major clades within the order, and 10 outgroup species from Asparagales, Dioscoreales, and Pandanales. In this latter data set, Campynemataceae was represented by 60 plastid-encoded genes sequenced from herbarium material of Campynema lineare. A large proportion of the plastid genome of C. dispar was also sequenced and compared to the plastid genomes of photosynthetic plants within Liliales and mycoheterotrophic plants within Asparagales to explore plastid genome reduction. The plastid genome of C. dispar is in the advanced stages of reduction, which signifies its high dependency on mycorrhizal fungi and is suggestive of a loss in photosynthetic ability. Functional plastid genes found in C. dispar may be applicable to other species in Corsiaceae, which will provide a basis for in-depth molecular analyses of interspecies relationships within the family, once molecular data from other members become available.  相似文献   

15.
Synthesis of stress proteins after heat shock and different periods of UV-B radiation were investigated with marine diatom species from the North Sea Ditylum brightwellii, Lithodesmium variabile, Odontella sinensis, Thalassiosira rotula and the Antarctic diatom Odontella weissfloggii from the Weddell Sea. Algae were grown in an artifical sea-water medium under controlled laboratory conditions: light/dark regime of 12:12 h (7.2 W m?2), normal air (0.035 vol.% CO2) and 18° or 4 °C. All the tested diatom species can produce heat shock proteins (HSPS) of the 70 kDa family by in vivo labelling with [35S]-methionine. The same results were obtained for Odontella sinensis, Ditylum brightwellii and Odontella weissflogii by estimation of the in vitro translation products with poly-A-mRNA isolated from these organisms. However, Odontella weissflogii, a species relatively insensitive to UV-B irradiance, did not synthesize UV-induced HSPS, whereas the UV-sensitive diatom Odontella sinensis, as well as Lithodesmium variabile, produced all the observed HSPS after UV-B exposure. In addition, a protein of 43 kDa was found after UV-B irradiance of the temperate Odontella sinensis. The temperate marine diatom Thalassiosira rotula synthesized 70 kDa and 5 7 kDa proteins after a heat shock and a UV-B exposure of 2 h, but a 40 kDa protein could not be detected, whereas a 60 kDa protein was found after 2 h UV-B exposure. The results are discussed in view of a possible adaptation of O. weissflogii to an enhanced UV dose.  相似文献   

16.
In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.  相似文献   

17.

Background

The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comParative analyses. In comParative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

Results

The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in s of abundance and length and most contain repeat motifs based on A and T nucleotides.

Conclusion

SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in-depth analysis, at least in these aspects. The pattern of evolution in the sequences identified as ycf15 and ycf68 is not consistent with them being protein-coding genes. In fact, these regions show no evidence of sequence conservation beyond what is normal for non-coding regions of the IR.  相似文献   

18.
Recent phylogenetic studies of the diatoms indicate that members of the order Thalassiosirales occupy an interesting position in the diatom evolutionary tree. Despite their radial morphology and scaly auxospores, they are consistently recovered in molecular analyses as a member of subdivision Bacillariophytina and a sister clade to non‐fultoportulate and non‐radial lithodesmioids. This study included 46 species from nine traditionally accepted extant genera, and analyzed 43 nuclear small subunit (SSU) rRNA sequences in parallel with a survey of the variation in fultoportula structure. Three possible scenarios leading to the evolution of the fultoportula are discussed in the context of molecular and morphological similarities between the examined Thalassiosirales and their SSU rRNA sister clade Lithodesmiales. We speculate that the fultoportula might be derived by a modification of either a cribrum in an areola (fultoportula within an areola), or structures similar to marginal ridges now seen in lithodesmioids around a cluster of poroids (fultoportula in a tube), or finally, that the central fultoportula may have an origin different from the marginal fultoportulae. Our data confirm that fultoportula‐bearing diatoms constitute a natural phylogenetic group. The families Thalassiosiraceae, Skeletonemaceae, and Stephanodiscaceae and the genus Thalassiosira Cleve were unexpectedly found to be paraphyletic. Further, Cyclotella Kutz. and Stephanodiscus Ehr. may not be closely related and some species of these genera are more closely allied to other species of Thalassiosira. The generitype, T. nordenskioeldii, is embedded within a large poorly structured cluster of species that includes several members of Thalassiosira, Planktoniella sol, Minidiscus trioculatus, and two members of Stephanodiscus. An emendment of the order Lithodesmiales and the family Lauderiaceae are proposed.  相似文献   

19.
Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号