首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Most of the hypomorphic Prep1i/i embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1i/i fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1i/i FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1i/i FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit+Sca1+LinAA4.1+ (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis.  相似文献   

5.
Members of the transforming growth factor-β superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-β pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.  相似文献   

6.
7.
8.
9.
10.
11.
Neural stem cells (NSCs) possess high proliferative potential and the capacity for self-renewal with retention of multipotency to differentiate into neuronal and glial cells. NSCs are the source for neurogenesis during central nervous system development from fetal and adult stages. Although the human natural killer-1 (HNK-1) carbohydrate epitope is expressed predominantly in the nervous system and involved in intercellular adhesion, cell migration, and synaptic plasticity, the expression patterns and functional roles of HNK-1-containing glycoconjugates in NSCs have not been fully recognized. We found that HNK-1 was expressed in embryonic mouse NSCs and that this expression was lost during the process of differentiation. Based on proteomics analysis, it was revealed that the HNK-1 epitopes were almost exclusively displayed on an extracellular matrix protein, tenascin-C (TNC), in the mouse embryonic NSCs. Furthermore, the HNK-1 epitope was found to be present only on the largest isoform of the TNC molecules. In addition, the expression of HNK-1 was dependent on expression of the largest TNC variant but not by enzymes involved in the biosynthesis of HNK-1. By knocking down HNK-1 sulfotransferase or TNC by small interfering RNA, we further demonstrated that HNK-1 on TNC was involved in the proliferation of NSCs via modulation of the expression level of the epidermal growth factor receptor. Our finding provides insights into the function of HNK-1 carbohydrate epitopes in NSCs to maintain stemness during neural development.  相似文献   

12.
13.
14.
A 30-node signed and directed network responsible for self-renewal and pluripotency of mouse embryonic stem cells (mESCs) was extracted from several ChIP-Seq and knockdown followed by expression prior studies. The underlying regulatory logic among network components was then learned using the initial network topology and single cell gene expression measurements from mESCs cultured in serum/LIF or serum-free 2i/LIF conditions. Comparing the learned network regulatory logic derived from cells cultured in serum/LIF vs. 2i/LIF revealed differential roles for Nanog, Oct4/Pou5f1, Sox2, Esrrb and Tcf3. Overall, gene expression in the serum/LIF condition was more variable than in the 2i/LIF but mostly consistent across the two conditions. Expression levels for most genes in single cells were bimodal across the entire population and this motivated a Boolean modeling approach. In silico predictions derived from removal of nodes from the Boolean dynamical model were validated with experimental single and combinatorial RNA interference (RNAi) knockdowns of selected network components. Quantitative post-RNAi expression level measurements of remaining network components showed good agreement with the in silico predictions. Computational removal of nodes from the Boolean network model was also used to predict lineage specification outcomes. In summary, data integration, modeling, and targeted experiments were used to improve our understanding of the regulatory topology that controls mESC fate decisions as well as to develop robust directed lineage specification protocols.  相似文献   

15.
In mammalian cells, the nucleosome-binding protein HMGN1 (high mobility group N1) affects the structure and function of chromatin and plays a role in repair of damaged DNA. HMGN1 affects the interaction of DNA repair factors with chromatin and their access to damaged DNA; however, not all of the repair factors affected have been identified. Here, we report that HMGN1 affects the self-poly(ADP-ribosyl)ation (i.e., PARylation) of poly(ADP-ribose) polymerase-1 (PARP-1), a multifunctional and abundant nuclear enzyme known to recognize DNA lesions and promote chromatin remodeling, DNA repair, and other nucleic acid transactions. The catalytic activity of PARP-1 is activated by DNA with a strand break, and this results in self-PARylation and PARylation of other chromatin proteins. Using cells obtained from Hmgn1(-/-) and Hmgn1(+/+) littermate mice, we find that in untreated cells, loss of HMGN1 protein reduces PARP-1 self-PARylation. A similar result was obtained after MMS treatment of these cells. In imaging experiments after low energy laser-induced DNA damage, less PARylation at lesion sites was observed in Hmgn1(-/-) than in Hmgn1(+/+) cells. The HMGN1 regulation of PARP-1 activity could be mediated by direct protein-protein interaction as HMGN1 and PARP-1 were found to interact in binding assays. Purified HMGN1 was able to stimulate self-PARylation of purified PARP-1, and in experiments with cell extracts, self-PARylation was greater in Hmgn1(+/+) than in Hmgn1(-/-) extract. The results suggest a regulatory role for HMGN1 in PARP-1 activation.  相似文献   

16.
17.
18.
Currently, there are difficulties associated with the culturing of pluripotent human embryonic stem cells (hESCs), and knowledge regarding their regulatory mechanisms is limited. MicroRNAs (miRNAs) regulate gene expression and have critical functions in stem cell self-renewal and differentiation. Moreover, fibroblast growth factor (FGF) and the insulin-like growth factor receptor (IGF-1R) are key activators of signaling in hESCs. Based on the identification of complementary binding sites in miR-223 and IGF-1R mRNA, it is proposed that miR-223 acts as a local regulator of IGF-1R. Therefore, levels of miR-223 were detected in differentiated versus undifferentiated hESCs. In addition, proliferation, apoptosis, and differentiation were assayed in these two hESC populations and were compared in the presence of exogenous miR-223 and miR-223 inhibitor. Inhibition of miR-223 was found to maintain the undifferentiated state of hESCs, while addition of miR-223 induced differentiation. Furthermore, these effects were found to be likely dependent on IGF-1R/Akt signaling.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号