首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolbachia are maternally inherited bacterial endosymbionts that naturally infect a diverse array of arthropods. They are primarily known for their manipulation of host reproductive biology, and recently, infections with Wolbachia have been proposed as a new strategy for controlling insect vectors and subsequent human-transmissible diseases. Yet, Wolbachia abundance has been shown to vary greatly between individuals and the magnitude of the effects of infection on host life-history traits and protection against infection is correlated to within-host Wolbachia abundance. It is therefore essential to better understand the factors that modulate Wolbachia abundance and effects on host fitness. Nutrition is known to be one of the most important mediators of host–symbiont interactions. Here, we used nutritional geometry to quantify the role of macronutrients on insect–Wolbachia relationships in Drosophila melanogaster. Our results show fundamental interactions between diet composition, host diet selection, Wolbachia abundance and effects on host lifespan and fecundity. The results and methods described here open a new avenue in the study of insect–Wolbachia relationships and are of general interest to numerous research disciplines, ranging from nutrition and life-history theory to public health.  相似文献   

2.
Intracellular bacteria of the genus Wolbachia are among the most abundant endosymbionts on the planet, occurring in at least two major phyla-the Arthropoda and Nematoda. Current surveys of Wolbachia distribution have found contrasting patterns within these groups. Whereas Wolbachia are widespread and occur in all three major subphyla of arthropods, with estimates placing them in at least several million arthropod species, the presence of nematodes carrying Wolbachia is currently confined to the filariids, in which they occur at appreciable frequencies. It has been hypothesized that Wolbachia entered the ancestor of modern-day filariids in a single acquisition event, and subsequently cospeciated with their filariid hosts. To further investigate this hypothesis, we examined the broader distribution of Wolbachia in nematodes using a polymerase chain reaction (PCR) assay in a diverse set of nonfilariid species. The assay consisted of three different types of PCR screens on adults of 20 secernentean nematode species (14 rhabditids, 2 strongylid parasites of vertebrates; 1 diplogasterid; 3 cephalobid relatives, 1 myolaim, and 1 filariid) and two adenophorean species (plectids). Two PCR screens were specific to the 16S rDNA and ftsZ protein coding gene of Wolbachia; and the third screen was specific to the 18S rDNA of the nematodes. Based upon our results, we conclude that Wolbachia are absent in all 21 non-filariid species encompassing all the major groups of the Secernentea and two species of Adenophorea, from which the Secernentea derived. The absence of Wolbachia in these non-filariids is consistent with the hypothesis that Wolbachia entered the nematode phylum once, in an ancestral lineage of extant filariids.  相似文献   

3.
Monochamus alternatus is the longicorn beetle notorious as a vector of the pinewood nematode that causes the pine wilt disease. When two populations of M. alternatus were subjected to diagnostic polymerase chain reaction (PCR) detection of four Wolbachia genes, only the ftsZ gene was detected from one of the populations. The Wolbachia ftsZ gene persisted even after larvae were fed with a tetracycline-containing diet for six weeks. The inheritance of the ftsZ gene was not maternal but biparental, exhibiting a typical Mendelian pattern. The ftsZ gene titres in homozygotic ftsZ+ insects were nearly twice as high as those in heterozygotic ftsZ+ insects. Exhaustive PCR surveys revealed that 31 and 30 of 214 Wolbachia genes examined were detected from the two insect populations, respectively. Many of these Wolbachia genes contained stop codon(s) and/or frame shift(s). Fluorescent in situ hybridization confirmed the location of the Wolbachia genes on an autosome. On the basis of these results, we conclude that a large Wolbachia genomic region has been transferred to and located on an autosome of M. alternatus. The discovery of massive gene transfer from Wolbachia to M. alternatus would provide further insights into the evolution and fate of laterally transferred endosymbiont genes in multicellular host organisms.  相似文献   

4.
The bacterium Wolbachia (order Rickettsiales), representing perhaps the most abundant vertically transmitted microbe worldwide, infects arthropods and filarial nematodes. In arthropods, Wolbachia can induce reproductive alterations and interfere with the transmission of several arthropod-borne pathogens. In addition, Wolbachia is an obligate mutualist of the filarial parasites that cause lymphatic filariasis and onchocerciasis in the tropics. Targeting Wolbachia with tetracycline antibiotics leads to sterilisation and ultimately death of adult filariae. However, several weeks of treatment are required, restricting the implementation of this control strategy. To date, the response of Wolbachia to stress has not been investigated, and almost nothing is known about global regulation of gene expression in this organism. We exposed an arthropod Wolbachia strain to doxycycline in vitro, and analysed differential expression by directional RNA-seq and label-free, quantitative proteomics. We found that Wolbachia responded not only by modulating expression of the translation machinery, but also by upregulating nucleotide synthesis and energy metabolism, while downregulating outer membrane proteins. Moreover, Wolbachia increased the expression of a key component of the twin-arginine translocase (tatA) and a phosphate ABC transporter ATPase (PstB); the latter is associated with decreased susceptibility to antimicrobials in free-living bacteria. Finally, the downregulation of 6S RNA during translational inhibition suggests that this small RNA is involved in growth rate control. Despite its highly reduced genome, Wolbachia shows a surprising ability to regulate gene expression during exposure to a potent stressor. Our findings have general relevance for the chemotherapy of obligate intracellular bacteria and the mechanistic basis of persistence in the Rickettsiales.  相似文献   

5.

Background

Lateral gene transfer (LGT) from bacterial Wolbachia endosymbionts has been detected in ~20% of arthropod and nematode genome sequencing projects. Many of these transfers are large and contain a substantial part of the Wolbachia genome.

Results

Here, we re-sequenced three D. ananassae genomes from Asia and the Pacific that contain large LGTs from Wolbachia. We find that multiple copies of the Wolbachia genome are transferred to the Drosophila nuclear genome in all three lines. In the D. ananassae line from Indonesia, the copies of Wolbachia DNA in the nuclear genome are nearly identical in size and sequence yielding an even coverage of mapped reads over the Wolbachia genome. In contrast, the D. ananassae lines from Hawaii and India show an uneven coverage of mapped reads over the Wolbachia genome suggesting that different parts of these LGTs are present in different copy numbers. In the Hawaii line, we find that this LGT is underrepresented in third instar larvae indicative of being heterochromatic. Fluorescence in situ hybridization of mitotic chromosomes confirms that the LGT in the Hawaii line is heterochromatic and represents ~20% of the sequence on chromosome 4 (dot chromosome, Muller element F).

Conclusions

This collection of related lines contain large lateral gene transfers composed of multiple Wolbachia genomes that constitute >2% of the D. ananassae genome (~5 Mbp) and partially explain the abnormally large size of chromosome 4 in D. ananassae.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1097) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.  相似文献   

8.
Wolbachia may act as a biological control agent for pest management; in particular, the Wolbachia variant wMelPop (popcorn) shortens host longevity and may be useful for dengue suppression. However, long-term changes in the host and Wolbachia genomes can alter Wolbachia spread and/or host effects that suppress disease. Here, we investigate the phenotypic effects of wMelPop in a non-native host, Drosophila simulans, following artificial transinfection approximately 200 generations ago. Long-term rearing and maintenance of the bacteria were at 19°C in the original I-102 genetic background that was transinfected with the popcorn strain. The bacteria were then introgressed into three massbred backgrounds, and tetracycline was used to create uninfected sublines. The effect of wMelPop on longevity in this species appears to have changed; longevity was no longer reduced at 25°C in some nuclear backgrounds, reflecting different geographical origin, selection or drift, although the reduction was still evident for flies held at 30°C. Wolbachia influenced productivity and viability, and development time in some host backgrounds. These findings suggest that long-term attenuation of Wolbachia effects may compromise the effectiveness of this bacterium in pest control. They also emphasize the importance of host nuclear background on Wolbachia phenotypic effects.  相似文献   

9.
The Brugia malayi endosymbiont Wolbachia has recently been shown to be essential for its host’s survival and development. However, relatively little is known about Wolbachia proteins that interact with the filarial host and which might be important in maintaining the obligate symbiotic relationship. The Wolbachia surface proteins (WSPs) are members of the outer membrane protein family and we hypothesise that they might be involved in the Wolbachia-Brugia symbiotic relationship. Notably, immunolocalisation studies of two WSP members, WSP-0432 and WSP-0284 in B. malayi female adult worms showed that the corresponding proteins are not only present on the surface of Wolbachia but also in the host tissues, with WSP-0284 more abundant in the cuticle, hypodermis and the nuclei within the embryos. These results confirmed that WSPs might be secreted by Wolbachia into the worm’s tissue. Our present studies focus on the potential involvement of WSP-0284 in the symbiotic relationship of Wolbachia with its filarial host. We show that WSP-0284 binds specifically to B. malayi crude protein extracts. Furthermore, a fragment of the hypothetical B. malayi protein (Bm1_46455) was found to bind WSP-0284 by panning of a B. malayi cDNA library. The interaction of WSP-0284 and this protein was further confirmed by ELISA and pull-down assays. Localisation by immunoelectron microscopy within Wolbachia cells as well as in the worm’s tissues, cuticle and nuclei within embryos established that both proteins are present in similar locations within the parasite and the bacteria. Identifying such specific interactions between B. malayi and Wolbachia proteins should lead to a better understanding of the molecular basis of the filarial nematode and Wolbachia symbiosis.  相似文献   

10.
Wolbachia are maternally inherited endosymbiotic alpha-proteobacteria found in terrestrial arthropods and filarial nematodes. They are transmitted vertically through host cytoplasm and alter host biology by inducing various reproductive alterations, like feminization, parthenogenesis, male killing (MK) and cytoplasmic incompatibility. In butterflies, some effects especially MK and sperm-egg incompatibility are well established. All these effects skew the sex ratio towards female and subsequently favor the vertical transmission of Wolbachia. Some of the insects are also infected with multiple Wolbachia strains which may results in some complex phenomenon. In the present review the potential of Wolbachia for promoting evolutionary changes in its hosts with emphasis on recent advances in interactions of butterfly–Wolbachia is discussed. In addition to this, strain diversity of Wolbachia and its effects on various butterfly hosts are also highlighted.  相似文献   

11.
Heritable symbionts that protect their hosts from pathogens have been described in a wide range of insect species. By reducing the incidence or severity of infection, these symbionts have the potential to reduce the strength of selection on genes in the insect genome that increase resistance. Therefore, the presence of such symbionts may slow down the evolution of resistance. Here we investigated this idea by exposing Drosophila melanogaster populations to infection with the pathogenic Drosophila C virus (DCV) in the presence or absence of Wolbachia, a heritable symbiont of arthropods that confers protection against viruses. After nine generations of selection, we found that resistance to DCV had increased in all populations. However, in the presence of Wolbachia the resistant allele of pastrel—a gene that has a major effect on resistance to DCV—was at a lower frequency than in the symbiont-free populations. This finding suggests that defensive symbionts have the potential to hamper the evolution of insect resistance genes, potentially leading to a state of evolutionary addiction where the genetically susceptible insect host mostly relies on its symbiont to fight pathogens.  相似文献   

12.
O Duron 《Heredity》2013,111(4):330-337
Various bacteria live exclusively within arthropod cells and collectively act as an important driver of arthropod evolutionary ecology. Whereas rampant intra-generic DNA transfers were recently shown to have a pivotal role in the evolution of the most common of these endosymbionts, Wolbachia, the present study show that inter-generic DNA transfers also commonly take place, constituting a potent source of rapid genomic change. Bioinformatic, molecular and phylogenetic data provide evidence that a selfish genetic element, the insertion sequence ISRpe1, is widespread in the Wolbachia, Cardinium and Rickettsia endosymbionts and experiences recent (and likely ongoing) transfers over long evolutionary distances. Although many ISRpe1 copies were clearly expanding and leading to rapid endosymbiont diversification, degraded copies are also frequently found, constituting an unusual genomic fossil record suggestive of ancient ISRpe1 expansions. Overall, the present data highlight how ecological connections within the arthropod intracellular environment facilitate lateral DNA transfers between distantly related bacterial lineages.  相似文献   

13.
Insulin/IGF-like signalling (IIS) is an evolutionarily conserved pathway that has diverse functions in multi-cellular organisms. Mutations that reduce IIS can have pleiotropic effects on growth, development, metabolic homeostasis, fecundity, stress resistance and lifespan. IIS is also modified by extrinsic factors. For instance, in the fruitfly Drosophila melanogaster, both nutrition and stress can alter the activity of the pathway. Here, we test experimentally the hypothesis that a widespread endosymbiont of arthropods, Wolbachia pipientis, can alter the degree to which mutations in genes encoding IIS components affect IIS and its resultant phenotypes. Wolbachia infection, which is widespread in D. melanogaster in nature and has been estimated to infect 30 per cent of strains in the Bloomington stock centre, can affect broad aspects of insect physiology, particularly traits associated with reproduction. We measured a range of IIS-related phenotypes in flies ubiquitously mutant for IIS in the presence and absence of Wolbachia. We show that removal of Wolbachia further reduces IIS and hence enhances the mutant phenotypes, suggesting that Wolbachia normally acts to increase insulin signalling. This effect of Wolbachia infection on IIS could have an evolutionary explanation, and has some implications for studies of IIS in Drosophila and other organisms that harbour endosymbionts.  相似文献   

14.
Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A–F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes.  相似文献   

15.
Zhang X  Xue R  Cao G  Hu X  Wang X  Pan Z  Xie M  Yu X  Gong C 《Gene》2012,491(2):272-277
This study investigated the effects of gain of ecdysteroid UDP-glucosyltransferase (EGT) gene function mutation on the development of the silkworm, Bombyx mori. A novel piggyBac-derived plasmid containing the egt gene from B. mori nucleopolyhedrovirus (BmNPV) driven by a heat-shock protein (hsp) 23.7 promoter, with a neomycin-resistance gene (neo) controlled by the BmNPV ie-1 promoter and a green fluorescent protein gene (gfp) under the control of the B. mori actin 3 (A3) promoter was constructed. The vector was transferred into silkworm eggs by sperm-mediated gene transfer. Transgenic silkworms were produced after screening for neo and gfp genes and gene transfer was verified by polymerase chain reaction, dot-blot hybridization and western blotting. The hatching rate of G1 generation silkworm eggs was about 60% lower than that of normal silkworm eggs. The duration of the G1 generation larval period was extended, and the G2 generation pupal stage lasted four days longer than that in non-transgenic silkworms. The ecdysone blood level in G2 silkworms in the third instar molting stage was reduced by up to 90%. These results show that EGT suppressed transgenic silkworm molting, and that egt expression in egt-transgenic silkworms resulted in arrest of metamorphosis from pupae to moths.  相似文献   

16.
Wolbachia are maternally inherited, cellular endosymbionts that can enhance their fitness by biasing host sex ratio in favour of females. Male killing (MK) is an extreme form of sex-ratio manipulation that is selectively advantageous if the self-sacrifice of Wolbachia in males increases transmission through females. In live-bearing hosts, females typically produce more embryos than can be carried to term, and reproductive compensation through maternal resource reallocation from dead males to female embryos could increase the number of daughters born to infected females. Here, we report a new strain of MK Wolbachia (wCsc2) in the pseudoscorpion, Cordylochernes scorpioides, and present the first empirical evidence that reproductive compensation favours the killing of males in a viviparous host. Females infected with the wCsc2 strain produced 26 per cent more and significantly larger daughters than tetracycline-cured females. In contrast to the previously described wCsc1 MK Wolbachia strain in C. scorpioides, wCsc2 infection was not accompanied by an increase in the rate of spontaneous brood abortion. Characterization of the wCsc1 and wCsc2 strains by multi-locus sequence typing and by Wolbachia surface protein (wsp) gene sequencing indicates that the marked divergence between these two MK strains in their impact on host reproductive success, and hence in their potential to spread, has occurred in association with homologous recombination in the wsp gene.  相似文献   

17.
Species of the genus Wolbachia are a group of Rickettsia-like, maternally-inherited bacteria (gram negative), which cause various reproductive alterations in their arthropod and nematode hosts including cytoplasmic incompatibility (CI), male-killing, parthenogenesis and feminization. They can be divided into supergroups such as A and B based on phylogenetic analysis of 16S rDNA sequences. In this study, we examined the relative infection densities of Wolbachia strains among life cycle stages in the mosquito, Aedes albopictus in terms of crowding effect and temperature effect. A. albopictus is known to be superinfected with both A- and B-supergroup Wolbachia which cause CI. The relative Wolbachia densities within each individual mosquito were determined and quantified by using real-time quantitative PCR assay based on the wsp gene. We found that B-supergroup Wolbachia strain densities in this host species were consistently and significantly higher than in the A-supergroup. Larval crowding also reduced adult size of mosquitoes. Our results show clearly that the higher densities of mosquito larvae cause lower densities of Wolbachia strains. Examination of the effect of temperature on Wolbachia density in each stage of the mosquito clearly revealed a significant decrease in bacterial density following exposure to elevated temperature (37 °C) in both males and females.  相似文献   

18.

Background

Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi.

Methods

Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles.

Results and discussion

Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion).

Conclusions

Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.  相似文献   

19.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

20.
Environmental factors can induce significant epigenetic changes that may also be inherited by future generations. The maternally inherited symbiont of arthropods Wolbachia pipientis is an excellent candidate as an ‘environmental’ factor promoting trans-generational epigenetic changes: by establishing intimate relationships with germ-line cells, epigenetic effects of Wolbachia symbiosis would be manifested as a ‘maternal effect’, in which infection of the mother modulates the offspring phenotype. In the leafhopper Zyginidia pullula, Wolbachia feminizes genetic males, leaving them as intersexes. With the exception of male chitinous structures that are present in the last abdominal segment, feminized males display phenotypic features that are typical of females. These include ovaries that range from a typical histological architecture to an altered structure. Methylation-sensitive random amplification of polymorphic DNA profiles show that they possess a female genomic imprint. On the other hand, some rare feminized males bear testes instead of ovaries. These specimens possess a Wolbachia density approximately four orders of magnitude lower than feminized males with ovaries and maintain a male genome—methylation pattern. Our results indicate that Wolbachia infection disrupts male imprinting, which dramatically influences the expression of genes involved in sex differentiation and development, and the alteration occurs only if Wolbachia exceeds a density threshold. Thus, a new Wolbachia''s role as an environmental evolutionary force, inducing epigenetic trans-generational changes, should now be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号