首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-γ and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.  相似文献   

2.
A new generation of HIV vaccines   总被引:10,自引:0,他引:10  
WHO estimates that currently there are 40 million individuals living with HIV and there are 16000 new infections daily, worldwide. The best strategy to control the AIDS epidemic would be the development of an effective vaccine. New strategies for vaccine development have gained momentum over the past decade, some of which show greater promise in macaque models than did earlier protein-subunit or recombinant-canarypox strategies. These new vaccines include DNA vaccines and live viral vectors, and have been based on the generation of high levels of antiviral T cells. These vaccines do not prevent infection, but rather control virus replication with a rapid expansion and then contraction of antiviral T cells in response to the challenge infection. These recent vaccine successes in macaques raise hope that a vaccine can be developed that will successfully limit both the development of AIDS and viral transmission.  相似文献   

3.
[目的]马传染性贫血病毒(EIAV)弱毒疫苗致弱机制和免疫保护机理的研究可以为慢病毒疫苗的研究提供重要的模型.为探讨IFN-γ表达水平与疫苗保护性免疫的关系,本研究旨在建立一种准确、有效地检测EIAV感染马不同T细胞亚型表达IFN-γ水平的方法.[方法]我们将分离的马传贫弱毒疫苗免疫马(FDDV)、强毒感染马(LV)和健康马的外周血单核细胞(PBMC),体外分别经病毒(FDDV)和PMA/Inomycin激活、 BFA 阻断蛋白分泌、荧光标记马的特异性表面抗体和IFN-γ抗体等过程后,进行流式检测.[结果]疫苗免疫马产生的特异性IFN-γ水平为CD4 1.7(0.9%/CD8 6.1(1.2%,而强毒组则为CD4 0.6(0.1%/CD8 2.4(0.9%.[结论]本研究建立的多荧光参数流式细胞术同时检测细胞内IFN-γ染色和淋巴细胞亚型的方法,具有良好的特异性,稳定性和重复性.为研究EIAV弱毒疫苗免疫保护机制奠定了基础.  相似文献   

4.
Even though smallpox has been eradicated, the threat of accidental or intentional release has highlighted the fact there is little consensus about correlates of protective immunity or immunity against re-infection with the causative poxvirus, variola virus (VARV). As the existing vaccine for smallpox has unacceptable rates of side effects and complications, new vaccines are urgently needed. Surrogate animal models of VARV infection in humans, including vaccinia virus (VACV) and ectromelia virus (ECTV) infection in mice, monkeypox virus (MPXV) infection in macaques have been used as tools to dissect the immune response to poxviruses. Mousepox, caused by ECTV, a natural mouse pathogen, is arguably the best surrogate small-animal model, as it shares many aspects of virus biology, pathology and clinical features with smallpox in humans. The requirements for recovery from a primary ECTV infection have been well characterized and include type I and II interferons, natural killer cells, CD4T cells, CD8T cell effector function and antibody. From a vaccine standpoint, it is imperative that the requirements for recovery from secondary infection are also identified. We have investigated host immune parameters in response to a secondary ECTV infection, and have identified that interferon and CD8T cell effector functions are not essential; however, T- and B-cell interaction and antibody are absolutely critical for recovery from a secondary challenge. The central role of antibody has been also been identified in the secondary response to other poxviruses. These findings have important clinical implications and would greatly assist the design of therapeutic interventions and new vaccines for smallpox.  相似文献   

5.
The presence of high-avidity CTLs in the right compartment can greatly affect clearance of a virus infection (for example, AIDS viral infection of and dissemination from mucosa). Comparing mucosal vs systemic immunization, we observed a novel compartmentalization of CTL avidity and proportion of functionally active Ag-specific CD8(+) T cells to tissues proximal to sites of immunization. Whereas both s.c. and intrarectal routes of immunization induced tetramer(+) cells in the spleen and gut, the mucosal vaccine induced a higher percentage of functioning IFN-gamma(+) Ag-specific CD8(+) T cells in the gut mucosa in mice. Translating to the CD8(+) CTL avidity distribution in rhesus macaques, intrarectal vaccination induced more high-avidity mucosal CTL than s.c. vaccination and protection of mucosal CD4(+) T cells from AIDS viral depletion, whereas systemic immunization induced higher avidity IFN-gamma-secreting cells in the draining lymph nodes but no protection of mucosal CD4(+) T cells, after mucosal challenge with pathogenic simian/human immunodeficiency virus. Mucosal CD4(+) T cell loss is an early critical step in AIDS pathogenesis. The preservation of CD4(+) T cells in colonic lamina propria and the reduction of virus in the intestine correlated better with high-avidity mucosal CTL induced by the mucosal AIDS vaccine. This preferential localization of high-avidity CTL may explain previous differences in vaccination results and may guide future vaccination strategy.  相似文献   

6.
The RV144 trial demonstrated that an experimental AIDS vaccine can prevent human immunodeficiency virus type 1 (HIV-1) infection in humans. Because of its limited efficacy, further understanding of the mechanisms of preventive AIDS vaccines remains a priority, and nonhuman primate (NHP) models of lentiviral infection provide an opportunity to define immunogens, vectors, and correlates of immunity. In this study, we show that prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally. Analysis of different gene-based prime-boost immunization regimens revealed that recombinant adenovirus type 5 (rAd5) prime followed by replication-defective lymphocytic choriomeningitis virus (rLCMV) boost elicited robust CD4 and CD8 T-cell and humoral immune responses. This vaccine protected against infection after repetitive mucosal challenge with efficacies of 82% per exposure and 62% cumulatively. No effect was seen on viremia in infected vaccinated monkeys compared to controls. Protection correlated with the presence of neutralizing antibodies to the challenge viruses tested in peripheral blood mononuclear cells. These data indicate that a vaccine expressing a mismatched Env gene alone can prevent SIV infection in NHPs and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.  相似文献   

7.
Cellular immune responses against epitopes in conserved Gag and Pol sequences of human immunodeficiency virus type 1 have become popular targets for candidate AIDS vaccines. Recently, we used a simian-human immunodeficiency virus model (SHIV 89.6P) with macaques to demonstrate the control of a pathogenic mucosal challenge by priming with Gag-Pol-Env-expressing DNA and boosting with Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (rMVA). Here we tested Gag-Pol DNA priming and Gag-Pol rMVA boosting to evaluate the contribution of anti-Env immune responses to viral control. The Gag-Pol vaccine raised frequencies of Gag-specific T cells similar to those raised by the Gag-Pol-Env vaccine. Following challenge, these rapidly expanded to counter the challenge infection. Despite this, the control of the SHIV 89.6P challenge was delayed and inconsistent in the Gag-Pol-vaccinated group and all of the animals underwent severe and, in most cases, sustained loss of CD4(+) cells. Interestingly, most of the CD4(+) cells that were lost in the Gag-Pol-vaccinated group were uninfected cells. We suggest that the rapid appearance of binding antibody for Env in Gag-Pol-Env-vaccinated animals helped protect uninfected CD4(+) cells from Env-induced apoptosis. Our results highlight the importance of immune responses to Env, as well as to Gag-Pol, in the control of immunodeficiency virus challenges and the protection of CD4(+) cells.  相似文献   

8.
Human immunodeficiency virus (HIV) can be transmitted through infected seminal fluid or vaginal or rectal secretions during heterosexual or homosexual intercourse. To prevent mucosal transmission and spread to the regional lymph nodes, an effective vaccine may need to stimulate immune responses at the genitourinary mucosa. In this study, we have developed a mucosal model of genital immunization in male rhesus macaques, by topical urethral immunization with recombinant simian immunodeficiency virus p27gag, expressed as a hybrid Ty virus-like particle (Ty-VLP) and covalently linked to cholera toxin B subunit. This treatment was augmented by oral immunization with the same vaccine but with added killed cholera vibrios. Polymeric secretory immunoglobulin A (sIgA) and IgG antibodies to p27 were induced in urethral secretions, urine, and seminal fluid. This raises the possibility that the antibodies may function as a primary mucosal defense barrier against SIV (HIV) infection. The regional lymph nodes which constitute the genital-associated lymphoid tissue contained p27-specific CD4+ proliferative and helper T cells for antibody synthesis by B cells, which may function as a secondary immune barrier to infection. Blood and splenic lymphocytes also showed p27-sensitized CD4+ T cells and B cells in addition to serum IgG and IgA p27-specific antibodies; this constitutes a third level of immunity against dissemination of the virus. A comparison of genito-oral with recto-oral and intramuscular routes of immunization suggests that only genito-oral immunization elicits specific sIgA and IgG antibodies in the urine, urethra, and seminal fluid. Both genito-oral and recto-oral immunizations induced T-cell and B-cell immune responses in regional lymph nodes, with preferential IgA antibody synthesis. The mucosal route of immunization may prevent not only virus transmission through the genital mucosa but also dissemination and latency of the virus in the draining lymph nodes.  相似文献   

9.
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.  相似文献   

10.
Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8(+) lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor alpha4beta7 and traffic to the intestinal mucosa. SIV-specific CD8(+) T cells expressing alpha4beta7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express alpha4beta7. These results demonstrate the selective induction of SIV-specific CD8(+) T lymphocytes expressing alpha4beta7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine.  相似文献   

11.
Recent experimental observations suggest approaches to immunization that might finally result in at least a partially effective vaccine against infection with HIV-1. In particular, advances in our understanding of the contribution of vaccine-elicited cellular immunity to protecting memory CD4(+) T cells from virus-mediated destruction provide rational strategies for the development of this vaccine. This is therefore an ideal time to review our current understanding of HIV-1 and its control by the immune system, as well as the remaining problems that must be solved to facilitate the development of an effective vaccine against AIDS.  相似文献   

12.
Simian-human immunodeficiency virus (SHIV) infection in macaques provides a convenient model for testing vaccine efficacy and for understanding viral pathogenesis in AIDS. We immunized macaques with recombinant, Salmonella typhimurium (expressing Gag) or soluble Gag in adjuvant to generate T-cell-dependent lymphoproliferative or serum antibody responses. Immunized animals were challenged by intrarectal inoculation with SHIV89.6PD. Virus infection was accompanied by rapid losses of lymphoproliferative responses to Gag or phytohemagglutinin. By 8 weeks, mitogen responses recovered to near normal levels but antigen-specific immunity remained at low or undetectable levels. Serum antibody levels were elevated initially by virus exposure but soon dropped well below levels achieved by immunization. Our studies show a rapid depletion of preexisting Gag-specific CD4+ T cells that prevent or limit subsequent antiviral cellular and humoral immune responses during acute SHIV infection.  相似文献   

13.
HIV-Tat, a conserved protein playing a key role in the early life cycle of the human immunodeficiency virus (HIV) has been proposed as a potential AIDS vaccine. An HIV-Tat-based vaccine should elicit a broad, long-lasting, and neutralizing immune response. We have previously demonstrated that the adenylate cyclase (CyaA) from Bordetella pertussis targets dendritic cells and delivers CD8(+) and CD4(+) T-cell epitopes into the major histocompatibility complex class I and class II presentation pathways. We have also showed that CyaA induced specific and protective cytotoxic T cell responses in vivo. Here, we designed a prototype vaccine based on the HIV type 1 Tat delivered by CyaA (CyaA-E5-Tat) and tested its capacity to induce HIV-Tat-specific cellular as well as antibody responses. We showed that immunization of mice by CyaA-E5-Tat in the absence of adjuvant elicited strong and long-lasting neutralizing anti-Tat antibody responses more efficient than those obtained after immunization with Tat toxoid in aluminum hydroxide adjuvant. Analyses of the anti-Tat immunoglobulin G isotypes and the cytokine pattern showed that CyaA-E5-Tat induced a Th1-polarized immune response in contrast to the Th2-polarized immune responses obtained with the Tat toxoid. In addition, our data demonstrated that HIV-Tat-specific gamma interferon-producing CD8(+) T cells were generated after vaccination with CyaA-E5-Tat in a CD4(+) T-cell-independent manner. Based on these findings, CyaA-E5-Tat represents an attractive vaccine candidate for both preventive and therapeutic vaccination involving CyaA as an efficient nonreplicative vector for protein delivery.  相似文献   

14.
There is an urgent need for active immunization strategies that, if administered shortly after birth, could protect infants in developing countries from acquiring human immunodeficiency virus (HIV) infection through breast-feeding. Better knowledge of the immunogenic properties of vaccine candidates in infants and of the effect of maternal antibodies on vaccine efficacy will aid in the development of such a neonatal HIV vaccine. Simian immunodeficiency virus (SIV) infection of infant macaques is a useful animal model of pediatric HIV infection with which to address these questions. Groups of infant macaques were immunized at birth and 3 weeks of age with either modified vaccinia virus Ankara (MVA) expressing SIV Gag, Pol, and Env (MVA-SIVgpe) or live-attenuated SIVmac1A11. One MVA-SIVgpe-immunized group had maternally derived anti-SIV antibodies prior to immunization. Animals were challenged orally at 4 weeks of age with a genetically heterogeneous stock of virulent SIVmac251. Although all animals became infected, the immunized animals mounted better antiviral antibody responses, controlled virus levels more effectively, and had a longer disease-free survival than the unvaccinated infected monkeys. Maternal antibodies did not significantly reduce the efficacy of the MVA-SIVgpe vaccine. In conclusion, although the tested vaccines delayed the onset of AIDS, further studies are warranted to determine whether a vaccine that elicits stronger early immune responses at the time of virus exposure may be able to prevent viral infection or AIDS in infants.  相似文献   

15.
To be effective, a vaccine against human immunodeficiency virus type 1 (HIV-1) must induce virus-specific T-cell responses and it must be safe for use in humans. To address these issues, we developed a recombinant vaccinia virus DIs vaccine (rDIsSIVGag), which is nonreplicative in mammalian cells and expresses the full-length gag gene of simian immunodeficiency virus (SIV). Intravenous inoculation of 10(6) PFU of rDIsSIVGag in cynomologus macaques induced significant levels of gamma interferon (IFN-gamma) spot-forming cells (SFC) specific for SIV Gag. Antigen-specific lymphocyte proliferative responses were also induced and were temporally associated with the peak of IFN-gamma SFC activity in each macaque. In contrast, macaques immunized with a vector control (rDIsLacZ) showed no significant induction of antigen-specific immune responses. After challenge with a highly pathogenic simian-human immunodeficiency virus (SHIV), CD4(+) T lymphocytes were maintained in the peripheral blood and lymphoid tissues of the immunized macaques. The viral set point in plasma was also reduced in these animals, which may be related to the enhancement of virus-specific intracellular IFN-gamma(+) CD8(+) cell numbers and increased antibody titers after SHIV challenge. These results demonstrate that recombinant DIs has potential for use as an HIV/AIDS vaccine.  相似文献   

16.
H Chen  X Chuai  Y Deng  B Wen  W Wang  S Xiong  L Ruan  W Tan 《PloS one》2012,7(9):e43730

Background

A therapeutic vaccine for chronic hepatitis B virus (HBV) infection that enhances virus-specific cellular immune responses is urgently needed. The “prime–boost” regimen is a widely used vaccine strategy against many persistence infections. However, few reports have addressed this strategy applying for HBV therapeutic vaccine development.

Methodology/Principal Findings

To develop an effective HBV therapeutic vaccine, we constructed a recombinant vaccinia virus (Tiantan) containing the S+PreS1 fusion antigen (RVJSS1) combined with the HBV particle-like subunit vaccine HBVSS1 to explore the most effective prime–boost regimen against HBV. The immune responses to different prime–boost regimens were assessed in C57BL/C mice by ELISA, ELISpot assay and Intracellular cytokine staining analysis. Among the combinations tested, an HBV protein particle vaccine priming and recombinant vaccinia virus boosting strategy accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres as well as the strongest multi-antigen (PreS1, and S)-specific cellular immune response. HBSS1 protein prime/RVJSS1 boost immunization was also generated more significant level of both CD4+ and CD8+ T cell responses for Th1 cytokines (TNF-α and IFN-γ).

Conclusions

The HBSS1 protein-vaccine prime plus RVJSS1 vector boost elicits specific antibody as well as CD4 and CD8 cells secreting Th1-like cytokines, and these immune responses may be important parameters for the future HBV therapeutic vaccines.  相似文献   

17.
《Life sciences》1989,44(3):iii-xv
The mouse has been suggested as a host for comparative studies of several aspects of Human Acquired Immune Deficiency Syndrome (AIDS). Models include studies where part or all of the genome of Human Immunodeficiency Virus (HIV) has been incorporated into murine DNA in living mice. However, the most promising oppurtunities for study of immunological changes, vaccine development, cofactor involvement in disease, and anti-retroviral and immunostimulatory drug testing involve infection with murine retroviruses which cause many functional changes similar to AIDS. The viruses' effects on immune systems are reviewed with special emphasis on LP-BM5 murine leukemia virus which infects T and B cells, and macrophages. LP-BM5 infection suppresses cell functions while causing polyclonal lymphocyte activation. Murine immunological characterization, availability of inbred mouse strains, economy of using mice versus primates or humans models, and similarity of immune change caused by murine retroviruses compared to those seen in AIDS caused by HIV encourage rapid development of the LP-BM5 murine leukemia model.  相似文献   

18.
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.  相似文献   

19.
Despite an extensive knowledge of the molecular characteristics of the human immunodeficiency virus (HIV) identified more than ten years ago as the cause of AIDS (acquired immune deficiency syndrome) (Barre-Sinoussi et al. 1983) some critical questions have not been answered yet: Is the progressive disappearance of CD4+ helper T lymphocytes, the hallmark of AIDS, directly related to the killing of infected cells by the virus? If not, how do CD4+T cells die? Is HIV using its viral factory to kill uninfected bystander cells? What causes the immune system collapse in HIV infection? In the past three years some important studies have provided stimulating clues suggesting that AIDS is not only related to the killing of host cells by HIV but is also a consequence of mechanisms of misactivation of the immune system, leading to anergy or apoptosis of non-infected effector cells. We discuss some of the in vivo and in vitro models providing evidence that HIV is able to kill and cripple the immune system either by acting directly on its targets or indirectly in bystander T cells keeping in mind that HIV disease must be considered as a multifactorial process.  相似文献   

20.
Influenza A virus is a negative-strand segmented RNA virus in which antigenically distinct viral subtypes are defined by the hemagglutinin (HA) and neuraminidase (NA) major viral surface proteins. An ideal inactivated vaccine for influenza A virus would induce not only highly robust strain-specific humoral and T-cell immune responses but also cross-protective immunity in which an immune response to antigens from a particular viral subtype (e.g., H3N2) would protect against other viral subtypes (e.g., H1N1). Cross-protective immunity would help limit outbreaks from newly emerging antigenically novel strains. Here, we show in mice that the addition of cationic lipid/noncoding DNA complexes (CLDC) as adjuvant to whole inactivated influenza A virus vaccine induces significantly more robust adaptive immune responses both in quantity and quality than aluminum hydroxide (alum), which is currently the most widely used adjuvant in clinical human vaccination. CLDC-adjuvanted vaccine induced higher total influenza virus-specific IgG, particularly for the IgG2a/c subclass. Higher levels of multicytokine-producing influenza virus-specific CD4 and CD8 T cells were induced by CLDC-adjuvanted vaccine than with alum-adjuvanted vaccine. Importantly, CLDC-adjuvanted vaccine provided significant cross-protection from either a sublethal or lethal influenza A viral challenge with a different subtype than that used for vaccination. This superior cross-protection afforded by the CLDC adjuvant required CD8 T-cell recognition of viral peptides presented by classical major histocompatibility complex class I proteins. Together, these results suggest that CLDC has particular promise for vaccine strategies in which T cells play an important role and may offer new opportunities for more effective control of human influenza epidemics and pandemics by inactivated influenza virus vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号