首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calmodulin antagonist compound 48/80 inhibits the phosphatase activity of the Ca2+-ATPase lowering its maximum velocity and leaving unaltered its apparent affinity for the substrate regardless on whether phosphatase activity is elicited by Ca2+ plus ATP or by calmodulin. Compound 48/80 has no effect on the Ki for ATP as inhibitor of the phosphatase. These results contrast sharply with the large increase that compound 48/80 induces in the apparent affinity of the regulatory site for the nucleotide of the Ca2+-ATPase and suggest that the active site for phosphatase activity is different from the regulatory site for ATP of the Ca2+-ATPase.  相似文献   

2.
Compound 48/80, an anti-calmodulin agent, reduces the maximum effect of ATP and does not affect the apparent affinity for ATP of the high-affinity site of the Ca2+-ATPase from calmodulin-bound membranes of human red cells. In the same preparation, 48/80 reduces more than 50-times the apparent affinity for ATP of the low-affinity site with little change in the maximum effect of the nucleotide at this site of the Ca2+-ATPase. The effects of compound 48/80 are independent of the concentration of Ca2+ between 30 and 200 microM. The apparent affinity of the low-affinity site of the Ca2+-ATPase for ATP is almost 100-fold less in calmodulin-stripped membranes than in calmodulin-bound membranes. In calmodulin-stripped membranes, exogenous calmodulin increases the apparent affinity for ATP up to the control values. These results indicate that apart from increasing the apparent affinity of the transport site for Ca2+, calmodulin also increases the apparent affinity of the regulatory site of the Ca2+-ATPase for ATP. Since this effect is exerted within the physiological ranges of ATP concentrations, it may participate in the physiological regulation of Ca2+ pumping by calmodulin.  相似文献   

3.
In this work we report an unusual pattern of activation by calmodulin on the (Ca2+ + Mg2+)-ATPase from basolateral membranes of kidney proximal tubule cells. The activity of the ATPase depleted of calmodulin is characterized by a high Ca2+ affinity (Km = 2.2-3.4 microM) and a biphasic dependence on ATP concentration. The preparation responded to the addition of calmodulin by giving rise to a new Ca2+ site of very high affinity (Km less than 0.05 microM). Calmodulin antagonists had diverse effects on ATPase activity. Compound 48/80 inhibited calmodulin-stimulated activity by 70%, whereas calmidazolium did not modify this component. In the absence of calmodulin, 48/80 still acted as an antagonist, increasing the Km for Ca2+ to 5.7 microM and reducing enzyme turnover by competing with ATP at the low affinity regulatory site. Calmidazolium did not affect Ca2+ affinity, but it did displace ATP from the regulatory site. At fixed Ca2+ (30 microM) and ATP (5 mM) concentrations, Pi protected against 48/80 and potentiated inhibition by calmidazolium. At 25 microM ATP, Pi protected against calmidazolium inhibition. We propose that the effects of ATP and Pi arise because binding of the drugs to the ATPase occurs mainly on the E2 forms.  相似文献   

4.
The effects of the condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde (compound 48/80) and ruthenium red on the partial reactions of the catalytic cycle of the sarcoplasmic reticulum Ca2+-ATPase of skeletal muscle were studied. The ATPase activity and both Ca2+ and Sr2+ uptake were inhibited by compound 48/80 when oxalate was used as a precipitating agent. The degree of inhibition decreased when oxalate was replaced by orthophosphate as the precipitating anion. Both the fast Ca2+ efflux and the synthesis of ATP observed during reversal of the Ca2+ pump were inhibited by compound 48/80. Inhibition of the reversal of the Ca2+ pump was caused by a competition between compound 48/80 and orthophosphate for the phosphorylation site of the enzyme. The fast Ca2+ release promoted by arsenate was impaired by compound 48/80. Ruthenium red competes with Ca2+ for the high affinity binding site of the Ca2+-ATPase, but did not interfere with the binding of Ca2+ to the low affinity binding site of the enzyme. In presence of Ca2+ concentrations higher than 5 microM, ruthenium red in concentrations up to 200 microM had no effect on both ATPase activity and Ca2+ uptake. However, the fast Ca2+ efflux promoted by arsenate and the fast Ca2+ efflux coupled with the synthesis of ATP observed during the reversal of the Ca2+ pump were inhibited by ruthenium red, half-maximal inhibition being attained in presence of 10-20 microM ruthenium red. In contrast to the effect of compound 48/80, ruthenium red did not inhibit the phosphorylation of the enzyme by orthophosphate. The ATP in equilibrium with Pi exchange catalyzed by the Ca2+-ATPase in the absence of transmembrane Ca2+ gradient was also inhibited by ruthenium red.  相似文献   

5.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

6.
The (Ca2+ + Mg2+)-ATPase from red cell membranes, purified by means of a calmodulin-containing affinity column according to the method of Gietzen et al. (Gietzen, K., Tejcka, M. and Wolf, H.U. (1980) Biochem. J. 189, 81-88) with either phosphatidylcholine or phosphatidylserine as phospholipid is characterized. The phosphatidylcholine preparation can be activated by calmodulin, while the phosphatidylserine preparation is fully activated without calmodulin. The enzyme shows a biphasic ATP dependence with two Km values of 3.5 and 120 microM. The enzyme is phosphorylated by ATP in the presence of Ca2+ only.  相似文献   

7.
The erythrocyte Ca2+-ATPase shifts reversibly between two states, the calmodulin-deficient A-state and the calmodulin-saturated B-state, dependent on calcium and calmodulin. The effects on this system of the four drugs, trifluoperazine, compound 48/80, TMB-8 and verapamil were studied. All four drugs inhibited the maximum activity of the B -state Ca2+-ATPase and, in addition, trifluoperazine and compound 48/80 in higher doses inhibited the A-state. Furthermore, the four drugs decreased the calmodulin sensitivity of the Ca2+-ATPase in the order of decreasing effect: trifluoperazine greater than compound 48/80 greater than TMB-8 greater than verapamil. In the same order of decreasing effect the drugs increased the time required for full calmodulin activation of the A-state of Ca2+-ATPase, whereas the drugs had only small effects on the rate of deactivation of the B-state, caused by dissociation of calmodulin from the enzyme. It is discussed whether the effects on calmodulin activation were caused by a reduction of free calmodulin due to the formation of drug-calmodulin complexes or whether the drugs, especially trifluoperazine, compound 48/80 and TMB-8, by binding to the Ca2+-ATPase, decreased the rate constants for association of calmodulin and enzyme.  相似文献   

8.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

9.
D Kosk-Kosicka  T Bzdega 《Biochemistry》1990,29(15):3772-3777
The study was performed on the purified human erythrocyte Ca2(+)-ATPase to test whether or not calmodulin promotes enzyme oligomerization. Two physiologically significant modes of activation of this enzyme were considered, by calmodulin binding to monomeric enzyme and by enzyme oligomerization [Kosk-Kosicka & Bzdega (1988) J. Biol. Chem. 263, 18184]; it was not clear whether the two modes were interdependent or operated independently. Fluorescence resonance energy transfer (FRET) between separately labeled Ca2(+)-ATPase molecules was used to monitor oligomerization. No change in energy transfer efficiency was observed upon subsequent addition of calmodulin at different enzyme concentrations. Lack of decrease in the enzyme concentration at which the half-maximal oligomerization occurred indicated that calmodulin did not facilitate oligomerization. The calmodulin inhibitor compound 48/80 had no effect on either the Ca2(+)-ATPase activity of oligomers or the extent of oligomerization measured by FRET while it drastically decreased the calmodulin-stimulated activity of the monomeric Ca2(+)-ATPase. The findings demonstrate that calmodulin is not involved in the oligomerization-induced activation pathway; it neither promotes oligomerization nor stimulates the Ca2(+)-ATPase activity of oligomers. We have demonstrated that calmodulin added before mixing donor- and acceptor-labeled enzyme populations prevented the occurrence of energy transfer. This inhibition of the formation of mixed donor-acceptor enzyme oligomers by calmodulin was dose dependent. Also, the reversal of the inhibition by compound 48/80 proceeded in a dose-dependent manner. Further, calmodulin prevented the apparent decrease of energy transfer efficiency that resulted from dilution of mixed donor-acceptor enzyme oligomers with unlabeled enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
(1) The response of the Ca2+-ATPase activity from human red cell membranes to ATP concentrations can be represented by the sum of two Michaelis-like curves: one with a Km of 2.5 micrometer and the other with a Km of 145 micrometer. (2) The maximum Ca2+-ATPase activity elicited by occupation of the site with lower Km represents about 10% of the activity attainable at non-limiting ATP concentrations. (3) 30--50% of the Ca2+-ATPase activity with lower Km remains in the absence of Mg2+ . Mg2+ increases V and the maximum effect of Ca2+, having no effect on the apparent affinities for ATP and Ca2+. (4) The large increase in Ca2+-ATPase activity which results from the occupation of the site with higher Km only takes place when Mg2+ is present. (5) Results are compatible with the idea that the Ca2+-ATPase from human red cell membranes has two classes of site for ATP binding, both of which are occupied when the enzyme catalyzes the hydrolysis of ATP at maximum rate. (6) The properties of the high affinity site suggest that this is the catalytic site of the Ca2+-ATPase. It is proposed that binding of ATP at the low affinity site regulates the turnover of the system.  相似文献   

11.
A 50% decrease in both the initial rate and the total capacity of Ca2+ uptake by the sarcoplasmic reticulum (SR) occurred 2 days after the onset of chronic (10 Hz) nerve stimulation in rabbit fast-twitch muscle. Prolonged stimulation (up to 28 days) did not lead to further decreases. This reduction, which was detected in muscle homogenates using a Ca2+-sensitive electrode, was reversible after 6 days cessation of stimulation and was not accompanied by changes in the immunochemically (ELISA) determined tissue level or isozyme characteristics of the SR Ca2+-ATPase protein. However, as measured in isolated SR, it correlated with a reduced specific activity of the Ca2+-ATPase. Kinetic analyses demonstrated that affinities of the SR Ca2+-ATPase towards Ca2+ and ATP were unaltered. Positive cooperativity for Ca2+ binding (h = 1.5) was maintained. However, a 50% decrease in Ca2+-dependent phosphoprotein formation indicated the presence of inactive forms of Ca2+-ATPase in stimulated muscle. The reduced phosphorylation of the enzyme was accompanied by an approximately 50% lowered binding of fluorescein isothiocyanate, a competitor at the ATP-binding site. In view of the unaltered affinity for ATP, this finding suggests that active Ca2+-ATPase molecules coexist in stimulated muscle with inactive enzyme molecules, the latter displaying altered properties at the nucleotide-binding site.  相似文献   

12.
1. The disulfide of thioinosine triphosphate, (SnoPPP)2, is a substrate of the Ca2+-pump and the Ca2+-ATPase of sarcoplasmic reticulum (Km = 400 microM). 2. Inactivation of Ca2+-ATPase by the beta,gamma-methylene diphosphonate analogue of the disulfide of thioinosine triphosphate, (SnoPP[CH2]P)2, in the presence of (Ca2+ + Mg2+ + K+) is preceeded by a dissociable enzyme inhibitor complex with a dissociation constant of 130 microM for a low-affinity binding site. ATP protected Ca2+-ATPase against the inactivation under these conditions with a dissociation constant of 140 microM. 3. Kinetic analysis of the inactivations of Ca2+-ATPase by (SnoPP[CH2]P)2 in the absence of Ca2+ and Mg2+ but the presence of K+ and EGTA led to the appearance of two nucleotide binding sites with two different inactivation velocities. Inactivation rate constants k2 were found for the rapid inactivating part (k2' = 1.44 X 10(-2) s-1) and the slow inactivating part (k2" = 1.15 X 10(-3) s-1). From the protective effect of ATP under these conditions a high-affinity (Kd = 48.78 microM) and a low-affinity ATP binding site (Kd = 114 microM) were apparent. 4. The affinity of the analogues to the enzyme is decreased in the sequence: (SnoPPP)2 > (SnoPP[NH]P)2 > (SnoPP[CH2]P)2 > (SnoP)2. 5. (SnoPPP)2-inactivated Ca2+-ATPase was reactivated by incubation with dithiothreitol. 6. Inactivation of Ca2+-ATPase by [gamma-32P](SnoPPP)2 in the presence of (Mg2+ + K+ + Ca2+) or (EGTA + K+) was accompanied by the incorporation of hydroxylamine-insensitive radioactivity into the acid-precipitable protein. The enzyme-bound [gamma-32P]SnoPPP was cleaved by dithiothreitol. 7. It is concluded that (SnoPPP)2 and its non-hydrolyzable analogues (SnoPP[NH]P)2 and (SnoPP[CH2]P)2 act as ATP affinity labels and form mixed disulfides with a sulfhydryl group within the active site.  相似文献   

13.
Characteristics of Ca2+ uptake were studied in a vesicular preparation of proximal tubule plasma membranes from rabbit kidney and compared with the properties of both membrane-bound and solubilized Ca2+-ATPase activities. Calcium uptake required both ATP and MgCl2 and revealed two kinetic components with respect to Ca2+ concentration requirements, one with a high affinity for Ca2+ (1.8 microM), operative in the range of cytosolic Ca2+ activity, and one with a low affinity for Ca2+ (250 microM) which may become active only at abnormally high cytosolic Ca2+ concentrations. The high- and low-affinity components were stimulated to similar extents by phosphate, and required similar concentrations of ATP (0.6 mM) for half-maximal activity. The amount of membrane-bound phosphoenzyme formed from ATP in the presence of Ca2+ was the same regardless of whether only one or both sites were saturated, suggesting that occupancy of the second Ca2+ binding site accelerates the enzyme turnover. Inhibition of Ca2+ transport by Na+ was reversed by the addition of ouabain or an ATP-regenerating system, indicating that this inhibitory effect of Na+ on Ca2+ uptake may be due to the accumulation of ADP in the medium as a result of Na+ pump activity. Low concentrations of carbonyl cyanide p-trifluoromethoxyphenylhydrazone and valinomycin (2.5 and 1 microM, respectively) were without effect on Ca2+ uptake in the presence of phosphate, whereas higher concentrations of the ionophores (200 and 100 microM, respectively) reduced uptake by 60% or more. The calmodulin antagonist 48/80 also reduced Ca2+ uptake with half-maximal effectiveness at 100 micrograms/ml. None of these drugs affected either ATPase activity or the EGTA-induced Ca2+ efflux from preloaded vesicles. The Ca2+ dependence of ATP hydrolysis by the membrane-bound enzyme preparation was similar to that observed for Ca2+ uptake by the vesicles. However, with solubilized enzyme, concentrations of Ca2+ similar to that found in the plasma reduced Ca2+-stimulated ATP hydrolysis to one-half of its maximal rate. This indicates that peritubular Ca2+ may play a role in the regulation of Ca2+ transport across the tubular epithelium. ATP could not be replaced by ITP as a substrate for Ca2+ uptake, and the (Ca2+ + Mg2+)ITPase activity of soluble enzyme was 25-fold lower than in the presence of ATP. This is an indication that the active Ca2+ pumping mechanism in proximal tubules is critically dependent on the nucleoside moiety of the substrate.  相似文献   

14.
The Ca2+ affinity of (Mg2+ + Ca2+)-ATPase in human red blood cells is regulated by a number of intracellular factors, including the association of the enzyme with the cytosolic Ca2+ binding protein, calmodulin. Ghosts prepared by hypotonic lysis in the presence of 0.1 mM CaCl2, or by a gradual stepwise hemolysis procedure, contain an EDTA-extractable protein whose effects are mimicked by calmodulin, whereas ghosts prepared by extensive washes in the absence of added CaCl2 lack calmodulin and contain only a high molecular weight heat stable activator. Purified calmodulin from human red cells or bovine brain shifts the apparent Ca2+ affinity of (Mg2+ + Ca2+)-ATPase activity in extensively washed ghosts to a high Ca2+ affinity state. The shift was most apparent in ghosts in which the Ca2+ affinity was decreased by EDTA treatment. Calmodulin increased the velocity of (Mg2+ + Ca2+)-ATPase in the EDTA-treated ghosts about 36-fold at a low (1.4 microM) Ca2+ concentration, compared with 6-fold before EDTA treatment. The maximum shift in apparent Ca2+ affinity occurred only in the presence of saturating concentrations of calmodulin. It is concluded that red cell calmodulin confers to the Ca2+ transport ATPase the ability to increase its apparent Ca2+ affinity, as well as its maximum velocity, in response to increases in intracellular Ca2+.  相似文献   

15.
3-O-methylfluorescein phosphate hydrolysis, catalyzed by purified erythrocyte Ca2+-ATPase in the absence of Ca2+, was slow in the basal state, activated by phosphatidylserine and controlled proteolysis, but not by calmodulin. p-Nitrophenyl phosphate competitively inhibits hydrolysis in the absence of Ca2+, while ATP inhibits it with a complex kinetics showing a high and a low affinity site for ATP. Labeling with fluorescein isothiocyanate impairs the high affinity binding of ATP, but does not appreciably modify the binding of any of the pseudosubstrates. In the presence of calmodulin, an increase in the Ca2+ concentration produces a bell-shaped curve with a maximum at 50 microM Ca2+. At optimal Ca2+ concentration, hydrolysis of 3-O-methylfluorescein phosphate proceeds in the presence of fluorescein isothiocyanate, is competitively inhibited by p-nitrophenyl phosphate and, in contrast to the result observed in the absence of Ca2+, it is activated by calmodulin. In marked contrast with other pseudosubstrates, hydrolysis of 3-O-methylfluorescein phosphate supports Ca2+ transport. This highly specific activity can be used as a continuous fluorescent marker or as a tool to evaluate partial steps from the reaction cycle of plasma membrane Ca2+-ATPases.  相似文献   

16.
Calmodulin Affinity for Brain Coated Vesicle Proteins   总被引:4,自引:2,他引:2  
A systematic characterization of the affinity of calmodulin for brain coated vesicles was undertaken. Binding of 125I-labeled calmodulin to coated vesicles was saturable and competed with unlabeled calmodulin, but not with troponin-C. Scatchard analysis revealed one high-affinity, low-capacity binding site, KD = 3.9 +/- 0.6 nM, Bmax = 16.3 +/- 2.4 pmol/mg, and one low-affinity, high-capacity binding site, KD = 102 +/- 15.0 nM, Bmax = 151 +/- 23.0 pmol/mg. Radioimmunoassay revealed that coated vesicles contain 1.05 microgram calmodulin/mg protein. Because this value remained constant even after removal of clathrin, the major coat protein, from the coated vesicle, it is apparent that calmodulin is associated with the vesicle per se rather than with its clathrin lattice. When a Triton X-100-treated extract of coated vesicles was passed through a Sepharose 4B-calmodulin affinity column, polypeptides with Mrs (molecular weights) of 100,000, 55,000, and 30,000 bound in a Ca2+-dependent manner. A 30,000 Mr protein doublet purified from coated vesicles was completely eluted by EGTA from the calmodulin affinity column, confirming that this protein doublet represents one of the coated vesicle calmodulin binding sites. Because calmodulin stimulated [Ca2+-Mg2+]-ATPase activity as well as Ca2+ uptake in coated vesicles, it is postulated that the 100,000 and 55,000 Mr calmodulin binding proteins represent the [Ca2+-Mg2+]-ATPase complex, the other coated vesicle calmodulin binding site.  相似文献   

17.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

18.
Heparin has been shown to be involved in the regulation of cellular Ca(2+) by binding to many proteins with high affinity. Here we examined the effects of heparin on the plasma membrane Ca(2+)-ATPase from porcine brain synaptosome. Our results showed that heparin dramatically inhibited the ATP hydrolysis and Ca(2+) uptake in the presence and absence of calmodulin. Together with controlled proteolysis by trypsin, we concluded that the calmodulin-binding domain of the plasma membrane Ca(2+)-ATPase was less important for the heparin inhibition. Excess phosphatidylserine was able to eliminate the heparin inhibition. We observed that Ca(2+) affinity kept no obvious changes, but the ATP affinity of plasma membrane Ca(2+)-ATPase was apparently decreased in the presence of heparin. Our results indicated that heparin had little effects on ATP or Ca(2+) binding sites of the enzyme.  相似文献   

19.
The effect of phospholipids on Triton X-100 solubilized (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes has been examined. The enzyme activity was increased by phosphatidylinositol, phosphatidylserine, and phosphatidic acid at both low (2 micrometer) and high (65 micrometer) free Ca2+ concentrations, while phosphatidylcholine had little effect and phosphatidylethanolamine and cardiolipin inhibited the (Ca2+ + Mg2+)-ATPase activity at all Ca2+ concentrations studied. The diacylglycerol, diolein, inhibited the enzyme at high, but not low, Ca2+ concentrations. Low concentrations of phospholipase A2 (1-2 international units) also activated the solubilized enzyme, at least in part by releasing free fatty acids, as the activation was mimicked by oleic acid (1-2 mumol/mg protein) and was abolished by fatty acid depleted bovine serum albumin. The combined activation by saturating levels of phosphatidylserine and calmodulin was additive at 6.5 mM MgCl2, and probably occurred at distinct sites on a regulatory component of the enzyme. The activation by both effectors was antagonized by MgCl2 at similar concentrations. Analysis of various models suggested that phosphatidylserine had two effects on (Ca2+ + Mg2+)-ATPase activity. First, a low Ca2+ affinity form of the enzyme was converted to a high Ca2+ affinity form, which was more sensitive to Ca2+ inhibition. Second, it increased the turnover of the enzyme, probably by enhancing its dephosphorylation, which was mimicked in this study by the Ca2+-dependent p-nitrophenylphosphatase partial reaction.  相似文献   

20.
Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号