首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity.  相似文献   

2.
Dubin G 《Biological chemistry》2002,383(7-8):1075-1086
Bacterial proteases secreted into an infected host may exhibit a wide range of pathogenic potentials. Staphylococci, in particular Staphylococcus aureus, are known to produce several extracellular proteases, including serine-, cysteine- and metalloenzymes. Their insensitivity to most human plasma protease inhibitors and, even more, the ability to inactivate some of these make the proteases potentially harmful. Indeed, several recent studies have shown that staphylococcal proteases are able to interact with the host defense mechanisms and tissue components as well as to modify other pathogen-derived virulence factors. A tight, cell density-dependent control of proteolytic activity expression, similar to that of the well-defined virulence determinants, further suggests the role of staphylococcal proteases in the infection process. Consistently, alterations in coordinated expression of extracellular proteins markedly diminished the virulence. However, despite these data and the fact that a strain deficient in sspABC operon coding for serine (sspA) and cysteine (sspB) proteases was highly attenuated in virulence in the animal infection model, it was impossible to unambiguously demonstrate the importance of any particular protease as a virulence factor. Therefore, it can be assumed that the orchestrated expression and interaction of a variety of extracellular and cell surface proteins rather than any particular one is responsible for the staphylococcal pathogenicity and that the proteases apparently play an important role in this complex process. Such redundant mechanism is very well suited for promoting the survival of staphylococci under diverse environmental conditions encountered in the infected host.  相似文献   

3.
Mouse pancreatic proteases were analyzed by one- and two-dimensional electrophoresis. Active proteases that existed in the luminal fluid were separated into at least eight bands in 8% polyacrylamide gel. Pancreatic proteases activated by intestinal extract were separated into at least seven bands. The mobilities of these bands were exactly the same as those of proteases in the luminal fluid except for those of the most cathodal band. Two kinds of trypsin (Try-I group and Try-II) and one kind of chymotrypsin (Chy-I) were determined by specific and nonspecific protease staining. Try-I group and Try-II were derived from different trypsinogens (Try G-I group and Try G-II), whereas Chy-I was derived from a single chymotrypsinogen (Chy G). Although Try G-II was activated by both intestinal extract and by bovine trypsin, Try G-I group activated only by intestinal extract. Intestinal-activating factors were analyzed by two-dimensional electrophoresis. Mouse enterokinase (enteropeptidase EC 3.4.4.8), which can activate bovine trypsinogen, had a slow mobility. In the intestine of the mouse there are several activating factors in addition to enterokinase. Although it is unclear what intestinal-activating factors can activate Chy G, there is a factor that can convert chymotrypsinogen into chymotrypsin directly. These data suggest that intestinal-activating factors play an important role in the activating mechanisms of mouse pancreatic zymogens.  相似文献   

4.
植物细胞程序性死亡(PCD)在植物生长发育和逆境适应中发挥重要作用。半胱氨酸蛋白酶(caspase)调控动物PcD的启动、执行及信号转导。通过人工合成底物、动物caspase抑制剂等方法已证实在植物中存在类caspase,可分为metacas.pases、VPEs(vacuolar processing enzymes)和saspases等。本文综述了植物类caspase的种类、结构、定位、功能及其调控PCD的研究进展,提出植物PCD中类caspase作用的调控途径,为深入研究植物PCD提供参考。  相似文献   

5.
Protochordate genomes enable a prevalence of hemostasis evolution. Broad searches were performed for homologs of human serine proteases of hemostasis on the genomes of Branchiostoma floridae, Saccoglossus kowalevskii, and Strongylocentrotus purpuratus. Sequences were analyzed by multiple bioinformatic tools. The survey revealed numerous homologous components. Amphioxus was rich in some serine proteases not accompanied by gamma-carboxyglutamic or kringle domains similar more to thrombin than to other coagulation factors. The serine proteases found in amphioxus exhibited the attributes similar to those of thrombin by phylogeny relationships, sequence conservation, gene synteny, spatial structure, and ligand docking. A few plasminogen- and plasminogen activators-like proteases with kringles were also present. Those serine proteases demonstrated the greatest proximity rather to plasminogen or plasminogen activators than to thrombin. Searching for homologs of serine protease hemostatic factors in acorn worm and sea urchin revealed several components similar to those found in amphioxus. Hypothetically, the common ancestor of chordates had three separate serine proteases that evolved independently into immunoglobulin-like and kringle proteases in lancelets, and prothrombin, plasminogen activators, and plasminogen in vertebrates. Ancestral proteases evolved in vertebrates into hemostasis factors after merging the proper N-terminal domains and duplications.  相似文献   

6.
The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through ‘repurposing’ drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.  相似文献   

7.
Cleavage activation of the hemagglutinin (HA) precursor is an essential step in the influenza virus replication cycle that is driven by host cell proteases. HA cleavage activation is required for virus-endosome membrane fusion and the subsequent release of the influenza virus genome into the cytoplasm. Previous studies have determined that HA cleavage is most likely driven by either membrane-bound or extracellular trypsin-like proteases that reside in the respiratory tract. However, there is still uncertainty regarding which proteases are critical for HA cleavage in vivo. Therefore, further investigation of HA cleavage activation is needed in order to gain insight into the critical proteases involved. Matriptase is a member of the type II transmembrane serine protease family that is highly expressed in a membrane-bound form throughout the respiratory tract. One feature of matriptase is that, once activated, the catalytic domain is secreted into the extracellular space and so serves as a functional extracellular protease. In this study, we have determined that the secreted, catalytic domain of matriptase has the ability to cleave and activate HA from the influenza virus H1 subtype but not the H2 and H3 subtypes. Furthermore, matriptase selectively cleaved the HA of particular strains within the H1 subtype, revealing both subtype and H1 strain specificity. Matriptase was also found to activate thrombolytic zymogens that have been shown to cleave and activate the influenza virus HA. Our data demonstrate that matriptase has the ability to cleave HA directly or indirectly by activating HA-cleaving zymogens.  相似文献   

8.
Extracellular and membrane-bound proteases from Bacillus subtilis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The esterase had a molecular weight of approximately 35,000. Amino-terminal amino acid sequences were determined, and the actions of a number of inhibitors were examined. Membrane vesicles contained bound forms of alkaline and neutral proteases and a group of previously undetected proteases (M proteases). Membrane-bound proteases were extracted with Triton X-100. Membrane-bound alkaline and neutral proteases were indistinguishable from the extracellular enzymes by the criteria of molecular weight, immunoprecipitation, and sensitivity to inhibitors. The M protease fraction accounted for approximately 7% of the total activity in Triton X-100 extracts of membrane vesicles. The M protease fraction was partially fractionated into four species (M1 through M4) by ion-exchange chromatography. Immunoprecipitation and sensitivity to inhibitors distinguished membrane-bound alkaline and neutral proteases from M proteases. In contrast to alkaline and neutral proteases, proteases M2 and M3 exhibited exopeptidase activity.  相似文献   

9.
Pseudomonas aeruginosa secretes several proteases considered as important virulence factors. In this report we present data indicating that two key proinflammatory cytokines, interleukin-6 (IL-6) and IL-8, are substrates for pseudolysin (elastase) and aeruginolysin (alkaline protease). While IL-6 was totally digested by both proteases, a long form of IL-8 (IL-8-77) was first rapidly processed into a 72-residue form with enhanced chemokine activity, then very slowly degraded. Interestingly, aeruginolysin bearing two additional residues at the N-terminus (Leu-Lys-aeruginolysin) in the absence of calcium degraded both IL-6 and IL-8-72 far more efficiently than the shorter form of the enzyme.  相似文献   

10.
11.
Host cell proteases that cleave the hemagglutinin (HA) of influenza viruses in the human respiratory tract are still not identified. Here we cloned two human type II transmembrane serine proteases with known airway localization, TMPRSS2 and HAT, into mammalian expression vector. Cotransfection of mammalian cells with plasmids encoding HA and either protease resulted in HA cleavage in situ. Transient expression of either protease in MDCK cells enabled multicycle replication of influenza viruses in these cells in the absence of exogenous trypsin. These data suggest that TMPRSS2 and HAT are candidates for proteolytic activation of influenza viruses in vivo.  相似文献   

12.
Modular serine proteases are central to the complement cascade of the mammalian humoral immune system. These proteases form protein complexes through multi-domain interactions to achieve their proteolytic activity. We review the structural insights into complement initiation by auto-activation of the hetero-tetrameric proteases of the large danger-recognition protein complexes, amplification and labelling of particles by the formation and activity of C3 convertases, and regulation by convertase dissociation and degradation to prevent 'bystander' damage to healthy host cells and tissues. The data reveal that complex formation and large domain-domain rearrangements underlie the proteolytic reactions of the complement cascade, which enables the host to recognize and clear invading microbes and host debris from its blood and fluids surrounding tissues.  相似文献   

13.
ClpP: a distinctive family of cylindrical energy-dependent serine proteases   总被引:1,自引:0,他引:1  
Yu AY  Houry WA 《FEBS letters》2007,581(19):3749-3757
Processes maintaining protein homeostasis in the cell are governed by the activities of molecular chaperones that mainly assist in the folding of polypeptide chains and by a large class of proteases that regulate protein levels through degradation. ClpP proteases define a distinctive family of cylindrical, energy-dependent serine proteases that are highly conserved throughout bacteria and eukaryota. They typically interact with ATP-dependent AAA+ chaperones that bind and unfold target substrates and then translocate them into ClpP for degradation. Structural and functional studies have provided a detailed view of the mechanism of function of this class of proteases.  相似文献   

14.
The major mechanism of cytotoxic lymphocyte killing involves the directed release of granules containing perforin and a number of proteases onto the target cell membrane. One of these proteases, granzyme B, has an unusual substrate site preference for Asp residues, a property that it shares with members of the emerging interleukin-1beta-converting enzyme (ICE)/CED-3 family of proteases. Here we show that granzyme B is sufficient to reproduce rapidly all of the key features of apoptosis, including the degradation of several protein substrates, when introduced into Jurkat cell-free extracts. Granzyme B-induced apoptosis was neutralized by a tetrapeptide inhibitor of the ICE/CED-3 family protease, CPP32, whereas a similar inhibitor of ICE had no effect. Granzyme B was found to convert CPP32, but not ICE, to its active form by cleaving between the large and small subunits of the CPP32 proenzyme, resulting in removal of the prodomain via an autocatalytic step. The cowpox virus protein CrmA, a known inhibitor of ICE family proteases as well as granzyme B, inhibited granzyme B-mediated CPP32 processing and apoptosis. These data demonstrate that CPP32 activation is a key event during apoptosis initiated by granzyme B.  相似文献   

15.
Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within –or close to– amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins.  相似文献   

16.
Erwinia chrysanthemi, a phytopathogenic enterobacterium, secretes three antigenically and structurally distinct proteases, A, B, and C and produces a protease inhibitor, a low-molecular-weight, heat-stable protein which remains mostly intracellular and which binds specifically to the A, B, and C proteases. The structural genes for proteases A, B, and C and for the inhibitor are clustered on a ca. 40-kilobase DNA fragment present in cosmid pEW4. Escherichia coli strains harboring pEW4 secrete the three proteases into the medium during the exponential phase of growth, without intracellular accumulation and in the absence of detectable cell lysis. An 8.5-kilobase EcoRI fragment derived from the cosmid encodes proteases B and C and the inhibitor as well as functions involved in the synthesis or secretion (or both) of the proteases. The inhibitor is not required for protease synthesis or secretion.  相似文献   

17.
Secretion, processing and activation of bacterial extracellular proteases   总被引:31,自引:3,他引:31  
Many different bacteria secrete proteases into the culture medium. Extracellular proteases produced by Gram-positive bacteria are secreted by a signal-peptide-dependent pathway and have a propeptide located between the signal peptide and the mature protein. Many extracellular proteases synthesized by Gram-negative bacteria are also produced as precursors with a signal peptide. However, at least two species of Gram-negative bacteria secrete one or more proteases via a novel signal-peptide-independent route. Most proteases secreted by Gram-negative bacteria also have a propeptide whose length and location vary according to the protease. Specific features of protease secretion pathways and the mechanisms of protease activation are discussed with particular reference to some of the best-characterized extracellular proteases produced by Gram-positive and Gram-negative bacteria.  相似文献   

18.
Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.  相似文献   

19.
In this review we present data about small intestine serine proteases, which are a considerable part of the proteolytic apparatus in this major part of the gastrointestinal tract. Serine proteases of intestinal epitheliocytes, their structural-functional features, cellular localization, physiological substrates, and mechanisms of activity regulation are examined. Information about biochemical and functional properties of serine proteases is presented in a common context with morphological and physiological data, this being the basis for understanding the functional processes taking place in upper part of the intestine. Serine proteases play a key role in the physiology of the small intestine and provide the normal functioning of this organ as part of the digestive system in which hydrolysis and suction of food substances occur. They participate in renewal and remodeling of tissues, retractive activity of smooth musculature, hormonal regulation, and defense mechanisms of the intestine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号