首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatitis E virus (HEV) is a major human pathogen in much of the developing world. It is a plus-strand RNA virus with a 7.2-kb polyadenylated genome consisting of three open reading frames, ORF1, ORF2, and ORF3. Of these, ORF2 encodes the major capsid protein of the virus and ORF3 encodes a small protein of unknown function. Using the yeast three-hybrid system and traditional biochemical techniques, we have studied the RNA binding activities of ORF2 and ORF3, two proteins encoded in the 3' structural part of the genome. Since the genomic RNA from HEV has been postulated to contain secondary structures at the 5' and 3' ends, we used these two terminal regions, besides other regions within the genome, in this study. Experiments were designed to test for interactions between the genomic RNA fusion constructs with ORF2 and ORF3 hybrid proteins in a yeast cellular environment. We show here that the ORF2 protein contains RNA binding activity. The ORF2 protein specifically bound the 5' end of the HEV genome. Deletion analysis of this protein showed that its RNA binding activity was lost when deletions were made beyond the N-terminal 111 amino acids. Finer mapping of the interacting RNA revealed that a 76-nucleotide (nt) region at the 5' end of the HEV genome was responsible for binding the ORF2 protein. This 76-nt region included the 51-nt HEV sequence, conserved across alphaviruses. Our results support the requirement of this conserved sequence for interaction with ORF2 and also indicate an increase in the strength of the RNA-protein interaction when an additional 44 bases downstream of this 76-nt region were included. Secondary-structure predictions and the location of the ORF2 binding region within the HEV genome indicate that this interaction may play a role in viral encapsidation.  相似文献   

2.
Ratra R  Kar-Roy A  Lal SK 《Biochemistry》2008,47(7):1957-1969
Hepatitis E virus (HEV) is a nonenveloped plus-stranded RNA virus that is a major cause of acute hepatitis in many developing countries. Recent work has shown HEV may be endemic in developed countries also. The 5' two-thirds of the 7.2 kb single-stranded RNA genome of HEV encodes ORF1, and the 3' end encodes the structural proteins ORF2 and ORF3. ORF1 is the nonstructural protein involved in viral RNA synthesis, and ORF2 is the major capsid protein, whereas ORF3 is a very small protein of only 123 amino acids. The precise cellular functions of ORF3 protein remain obscure, although it has been postulated to be a viral regulatory protein. To elucidate the role of ORF3 in viral pathogenesis, the yeast two-hybrid system was used to screen a human liver cDNA library for proteins interacting with ORF3. One of the ORF3-interacting partners thus isolated and identified was hemopexin, a 60 kDa acute-phase plasma glycoprotein with a high binding affinity to heme. The two-hybrid result was validated by in vitro pull-down and co-immunoprecipitation assays and finally by intracellular fluorescence resonance energy transfer. Using a deletion mapping approach, the hydrophobic domain II of ORF3 (spanning amino acids 37 to 62) was found to be responsible for binding to Hpx, with amino acids 63 to 77 possibly contributing to the strength of the interaction. The biological significance of this interaction in the virus life cycle has been discussed.  相似文献   

3.
4.
Tyagi S  Jameel S  Lal SK 《Journal of virology》2001,75(5):2493-2498
Hepatitis E virus (HEV) is a major human pathogen in the developing world. In the absence of an in vitro culture system, very little information on the basic biology of the virus exists. A small protein (approximately 13.5 kDa) of unknown function, pORF3, is encoded by the third open reading frame of HEV. The N-terminal region of pORF3 is associated with the cytoskeleton using one of its hydrophobic domains. The C-terminal half of pORF3 is rich in proline residues and contains a putative src homology 3 (SH3) binding domain and a mitogen-activated protein kinase phosphorylation site. In this study, we demonstrate that pORF3 can homodimerize in vivo, using the yeast two-hybrid system. We have isolated a 43-amino-acid interaction domain of pORF3 which is capable of self-association in vivo and in vitro. The overlap of the dimerization domain with the SH3 binding and phosphorylation domains suggests that pORF3 may have a dimerization-dependent regulatory role to play in the signal transduction pathway.  相似文献   

5.
Hepatitis E virus replicons containing the neomycin resistance gene expressed from open reading frames (ORFs) 2 and 3 were transfected into Huh-7 cells, and stable cell lines containing functional replicons were selected by constant exposure to G418 sulfate. Northern blot analyses detected full-length replicon RNA and a single subgenomic RNA. This subgenomic RNA, which was capped, initiated at nucleotide 5122 downstream of the first two methionine codons in ORF3 and was bicistronic; two closely spaced methionine codons in different reading frames were used for the initiation of ORF3 and ORF2 translation.  相似文献   

6.
The hepatitis E virus (HEV) is the causative agent of hepatitis E, an acute form of viral hepatitis. The biology and pathogenesis of HEV remain poorly understood. We have used in vitro binding assays to show that the HEV ORF3 protein (pORF3) binds to a number of cellular signal transduction pathway proteins. This includes the protein tyrosine kinases Src, Hck, and Fyn, the p85alpha regulatory subunit of phosphatidylinositol 3-kinase, phospholipase Cgamma, and the adaptor protein Grb2. A yeast two-hybrid assay was used to further confirm the pORF3-Grb2 interaction. The binding involves a proline-rich region in pORF3 and the src homology 3 (SH3) domains in the cellular proteins. Competition assays and computer-assisted modeling was used to evaluate the binding surfaces and interaction energies of the pORF3.SH3 complex. In pORF3-expressing cells, pp60(src) was found to associate with an 80-kDa protein, but no activation of the Src kinase was observed in these cells. However, there was increased activity and nuclear localization of ERK in the pORF3-expressing cells. These studies suggest that pORF3 is a viral regulatory protein involved in the modulation of cell signaling. The ORF3 protein of HEV appears to be the first example of a SH3 domain-binding protein encoded by a virus that causes an acute and primarily self-limited infection.  相似文献   

7.
Hepatitis E virus (HEV), an enterically transmitted pathogen, is one of the major causes of acute hepatitis in humans worldwide, being responsible for outbreaks and epidemics in regions with suboptimal sanitary conditions, in many of which it is endemic. In industrialized countries, hepatitis E is rarely reported, but recent studies have revealed quite high human seroprevalence rates and the possibility of porcine zoonotic transmission. There is currently no specific therapy or licensed vaccine against HEV infection, and little is known about its intracellular growth cycle, as until very recently no efficient cell culture system has been available. In the present study, vaccinia viruses have been used to express recombinant HEV ORF2 proteins, allowing the study of their glycosylation patterns and subcellular localization. Furthermore, the expressed proteins have been shown to be good antigens for diagnostic purposes and to elicit high and long-lasting specific anti-HEV titers of antibodies in mice that are passively transferred to the offspring by both transplacental and lactation routes.  相似文献   

8.
Hepatitis E virus (HEV) is a major human pathogen in the developing world. In the absence of an in vitro culture system, very little information exists on the basic biology of the virus. A small protein (approximately 13.5 kDa) of unknown function, pORF3, is encoded by the third open reading frame of HEV. We expressed pORF3 in transiently transfected COS-1 and Huh-7 cells and showed that it is a phosphoprotein which is modified at a serine residue(s). Deletion and site-directed mutants were created to establish Ser-80 as the phosphorylation site. This residue is present within a conserved primary sequence that showed consensus sites for phosphorylation by p34cdc2 kinase (cdc2K) and mitogen-activated protein kinase (MAPK). In vitro experiments with hexahistidine-tagged pORF3 expressed either in Escherichia coli or in COS-1 cells showed efficient phosphorylation with exogenously added MAPK. The pORF3 mutants also exhibited an in vitro phosphorylation profile with MAPK which was identical to that observed in vivo. In its primary sequence, pORF3 possesses two highly hydrophobic N-terminal domains. On subcellular fractionation, pORF3 was found to partition with the cytoskeletal fraction, and this association with the cytoskeleton was lost on deletion of hydrophobic domain I (amino acid residues 1 to 32). These results suggest that HEV pORF3 is a cytoskeleton-associated phosphoprotein and are discussed in terms of a possible function for pORF3 within the HEV replicative cycle.  相似文献   

9.
戊型肝炎病毒(HEV)为单股正链RNA病毒,整个基因组有3个开放性阅读框架(ORF),ORF2(全长约1.98kb)是主要结构基因编码区。将经过PCR获得的ORF2基因插入非分泌型酵母穿梭质粒pPIC3,构成受醇氧化酶(AOX2)的启动子与转录终止区控制的酵母表达质粒,重组质粒经酶切线性化后转化酵母细胞GS115,经过鉴定可挑取与酵母染色体发生交换的重组体,用于进一步的真核表达。  相似文献   

10.
Hepatitis E virus (HEV) is the etiological agent for viral hepatitis type E, which is a major problem in the developing world. Because HEV cannot be cultured in vitro, very little information exists on the mechanisms of HEV gene expression and genome replication. HEV is a positive-strand RNA virus with three potential open reading frames (ORFs), one of which (ORF2) is postulated to encode the major viral capsid protein (pORF2). We earlier showed (S. Jameel, M. Zafrullah, M. H. Ozdener, and S. K. Panda, J. Virol. 70:207-216, 1996) pORF2 to be a approximately 88-kDa glycoprotein, carrying N-linked glycans and a potential endoplasmic reticulum (ER)-directing signal at its N terminus. Treatment with the drugs brefeldin A and monensin suggest that the protein may accumulate within the ER. Based on mutational analysis, we demonstrate Asn-310 to be the major site of N-glycan addition. In COS-1 cell expression and in vitro translation experiments, we confirm the ER-translocating nature of the pORF2 N-terminal hydrophobic sequence and show that the protein is cotranslationally, but not posttranslationally, translocated across the ER membrane. Earlier, we had also demonstrated cell surface localization of a fraction of the COS-1 cell-expressed pORF2. Using glycosylation- and translocation-defective mutants of pORF2, we now show that while transit of pORF2 into the ER is necessary for its cell surface expression, glycosylation of the protein is not required for such localization. These results may offer clues to the mechanisms of gene expression and capsid assembly in HEV.  相似文献   

11.
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).  相似文献   

12.
Hepatitis E virus (HEV) infection is the most common cause of acute viral hepatitis worldwide. Hepatitis E is usually asymptomatic and self-limiting but it can become chronic in immunocompromised patients and is associated with increased fulminant hepatic failure and mortality rates in pregnant women. HEV genome encodes three proteins including the ORF2 protein that is the viral capsid protein. Interestingly, HEV produces 3 isoforms of the ORF2 capsid protein which are partitioned in different subcellular compartments and perform distinct functions in the HEV lifecycle. Notably, the infectious ORF2 (ORF2i) protein is the structural component of virions, whereas the genome-free secreted and glycosylated ORF2 proteins likely act as a humoral immune decoy. Here, by using a series of ORF2 capsid protein mutants expressed in the infectious genotype 3 p6 HEV strain as well as chimeras between ORF2 and the CD4 glycoprotein, we demonstrated how an Arginine-Rich Motif (ARM) located in the ORF2 N-terminal region controls the fate and functions of ORF2 isoforms. We showed that the ARM controls ORF2 nuclear translocation likely to promote regulation of host antiviral responses. This motif also regulates the dual topology and functionality of ORF2 signal peptide, leading to the production of either cytosolic infectious ORF2i or reticular non-infectious glycosylated ORF2 forms. It serves as maturation site of glycosylated ORF2 by furin, and promotes ORF2-host cell membrane interactions. The identification of ORF2 ARM as a unique central regulator of the HEV lifecycle uncovers how viruses settle strategies to condense their genetic information and hijack cellular processes.  相似文献   

13.
《Gene》1997,190(1):63-67
We have used the methylotrophic yeast, Pichia pastoris, to express the open reading frame 3 (ORF3) of the hepatitis E virus (HEV). The ORF3 gene codes for a 123-amino-acid protein that contains highly immunodominant epitopes and is a potentially useful diagnostic and immunoprophylactic antigen. The expressed protein showed positive on immunoblots probed against antibodies raised in rabbit and infected human patient sera. In order to optimize the ORF3 protein expression, we have examined the regulated expression of this protein and characterized it. Unlike its expression in E. coli, the ORF3 protein was present in both the soluble and insoluble fractions of the cell lysate. The expressed protein is not glycosylated and does not undergo any major processing in the host strain.  相似文献   

14.
An easy and reproducible procedure for purification and refolding of the full-length non-structural protein 3 (NS3) from hepatitis C virus has been developed. Refolding was achieved by simply diluting the protein into a suitable buffer. Low protein concentration, high pH, highly reducing conditions, the presence of detergent, and low viscosity were important parameters for high refolding efficiency. Refolding was insignificantly affected by the presence of Zn(2+) in the refolding buffer, while the addition of NS4A cofactor inhibited refolding. A comparison of the kinetic parameters showed that the refolded enzyme is not as catalytically competent as the native enzyme. Nevertheless, the activity of the refolded NS3 protease was dependent on the specific NS4A-peptide cofactor and was inhibited by the specific substrate-based NS3 protease inhibitor, which indicates that the refolded NS3 can be appropriate for inhibitor screening. The yield of pure protein from the insoluble fraction of cell lysate was 6 mg/L of bacterial culture, which is 18 times higher than obtained from the soluble fraction. Improvement of the refolding conditions has resulted in a 50-fold higher activity of the protease as compared to refolding in buffer with neutral pH and no additives.  相似文献   

15.
Immunogenicity for laboratory animals (rabbits and mice) of the whole hepatitis C virus envelope proteins and their conserved as well as hypervariable HVR1 sites has been investigated. Rabbit immune responses to HCV envelope proteins (both single E2 and E1E2 heterodimer) were shown to be much more efficient than murine immune responses. Rabbit immunization with E2 protein caused formation of antibodies to several highly conserved linear B-epitopes of this protein as well as to the N-terminal fragment of the hypervariable region HVR1. Epitopes in the CR2 region were determined for the first time. There was cross-reactivity between the N-terminal fragment of the protein E2 hypervariable region HVR1 and the octapeptide fragment of the protein E1 conserved region CR1, which shared four identical amino acid residues.  相似文献   

16.
The hepatitis E virus (HEV) is a small RNA virus and the cause of acute viral hepatitis E. The open reading frame 3 protein (pORF3) of HEV appears to be a pleiotropic regulatory protein that helps in the establishment, propagation and progression of viral infection. However, the global cellular effects of this protein remain to be explored. In the absence of traditional in vitro viral infection systems or efficient replicon systems, we made an adenovirus based ORF3 protein expression system to study its effects on host cell gene expression. We infected Huh7 hepatoma cells with recombinant adenoviruses expressing pORF3 and performed microarray-based gene expression analyses. Several genes down regulated in pORF3-expressing cells were found to be under regulation of the liver-enriched hepatocyte nuclear factor 4 (HNF4), which regulates hepatocyte-specific gene expression. While HNF4 localizes to the nucleus, its phosphorylation results in impaired nuclear localization of HNF4. Here we report that pORF3 increases HNF4 phosphorylation through the ERK and Akt kinases, which results in impaired nuclear translocation of HNF4 and subsequently the down modulation of HNF4-responsive genes in pORF3-expressing cells. We propose that modulation of several hepatocyte specific genes by pORF3 will create an environment favorable for viral replication and pathogenesis.  相似文献   

17.
Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.   总被引:4,自引:1,他引:3       下载免费PDF全文
Y X Feng  W Fu  A J Winter  J G Levin    A Rein 《Journal of virology》1995,69(4):2486-2490
  相似文献   

18.
19.
20.
Hepatitis E virus (HEV) is a positive-strand RNA virus that is prevalent in much of the developing world. ORF2 is the major capsid protein of HEV. Although ORF2 is an N-linked glycoprotein, it is abundantly located in the cytoplasm in addition to having membrane and surface localization. The mechanism by which ORF2 protein obtains access to the cytoplasm is unknown. In this report, we prove that initially all ORF2 protein is present in the endoplasmic reticulum and a fraction of it becomes retrotranslocated to the cytoplasm. The ability of ORF2 to be retrotranslocated is dependent on its glycosylation status and follows the canonical dislocation pathway. However, in contrast to general substrates of the dislocation pathway, retrotranslocated ORF2 protein is not a substrate of the 26S proteasome complex and is readily detectable in the cytoplasm in the absence of any protease inhibitor, suggesting that the retrotranslocated protein is stable in the cytoplasm. This study thus defines the pathway by which ORF2 obtains access to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号