首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage C31 encodes an integrase, which acts on the phage and host attachment sites, attP and attB, to form an integrated prophage flanked by attL and attR. In the absence of accessory factors, C31 integrase cannot catalyse attL x attR recombination to excise the prophage. To understand the mechanism of directionality, mutant integrases were characterized that were active in excision. A hyperactive integrase, Int E449K, gained the ability to catalyse attL x attR, attL x attL and attR x attR recombination whilst retaining the ability to recombine attP x attB. A catalytically defective derivative of this mutant, Int S12A, E449K, could form stable complexes with attP/attB, attL/attR, attL/attL and attR/attR under conditions where Int S12A only complexed with attP/attB. Further analysis of the Int E449K-attL/attR synaptic events revealed a preference for one of the two predicted synapse structures with different orientations of the attL/attR sites. Several amino acid substitutions conferring hyperactivity, including E449K, were localized to one face of a predicted coiled-coil motif in the C-terminal domain. This work shows that a motif in the C-terminal domain of C31 integrase controls the formation of the synaptic interface in both integration and excision, possibly through a direct role in protein-protein interactions.  相似文献   

2.
Higher-order nucleoprotein complexes often stabilize catalytic proteins in appropriate conformations for optimal activity and contribute to regulation during reactions requiring association of proteins and DNA. Formation of such complexes, known as intasomes, is required for site-specific recombination catalysed by bacteriophage Lambda Integrase protein (Int). Int-catalysed recombination is regulated by a second bacteriophage-encoded protein, Excisionase (Xis), which both stimulates excision and inhibits integration. To exert its effect, Xis binds co-operatively with Int, thereby inducing and stabilizing a DNA bend that alters the intasome structures formed during recombination. A rare int mutant, int 2268 ts, was reported (Enquist, L.W. and Weisberg, R.A. (1984) Mol Gen Genet 195: 62-69) to be more defective for excision than integration. Here, we have determined that this mutant Int protein contains an E47K substitution, and that the resultant excision-specific defect is due, at least in part, to destabilized interactions between Int and Xis. Analysis of several engineered substitutions at Int position 47 showed that a negatively charged residue is required for co-operative DNA binding between Int and Xis, and suggest that the Int-E47 residue may contact Xis directly. Substitutions at Int position 47 also affect co-operative binding among Int proteins at arm-type DNA sites, and thereby reduce the efficiency of both integration and excision. Collectively, these results suggest that a single surface of the Int amino-terminal domain mediates two alternate types of co-operative binding interactions.  相似文献   

3.
Phage lambda Integrase (Int) is the prototype of the so-called integrase family of conservative site-specific recombinases, which includes Cre and FLP. The natural function of Int is to execute integration and excision of the phage into and out of the Escherichia coli genome, respectively. In contrast to Cre and FLP, however, wild-type Int requires accessory proteins and DNA supercoiling of target sites to catalyze recombination. Here, we show that two mutant Int proteins, Int-h (E174 K) and its derivative Int-h/218 (E174 K/E218 K), which do not require accessory factors, are proficient to perform intramolecular integrative and excisive recombination in co-transfection assays inside human cells. Intramolecular integrative recombination is also detectable by Southern analysis in human reporter cell lines harboring target sites attB and attP as stable genomic sequences. Recombination by wild-type Int, however, is not detectable by this method. The latter result implies that eukaryotic co-factors, which could functionally replace the prokaryotic ones normally required for wild-type Int, are most likely not present in human cells.  相似文献   

4.
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.  相似文献   

5.
We have performed a mutational analysis of the xis gene of bacteriophage lambda. The Xis protein is 72 amino acids in length and required for excisive recombination. Twenty-six mutants of Xis were isolated that were impaired or deficient in lambda excision. Mutant proteins that contained amino acid substitutions in the N-terminal 49 amino acids of Xis were defective in excisive recombination and were unable to bind DNA. In contrast, one mutant protein containing a leucine to proline substitution at position 60 and two truncated proteins containing either the N-terminal 53 or 64 amino acids continued to bind lambda DNA, interact cooperatively with FIS and promote excision. However, these three mutants were unable to bind DNA cooperatively with Int. Cooperativity between wild-type Xis and Int required the presence of FIS, but not the Int core-type binding sites. This study shows that Xis has at least two functional domains and also demonstrates the importance of the cooperativity in DNA binding of FIS, Xis and Int in lambda excision.  相似文献   

6.
Site-specific recombination in bacteriophage λ involves interactions among proteins required for integration and excision of DNA molecules. We have analyzed the elements required to form an in vivo nucleoprotein complex of integrase (Int) and integration host factor (IHF). Interaction of Int with the core (the site of strand exchange) is stabilized by the flanking arm region of attL. IHF, in addition to Int, is required for efficient Int-core binding. We used the in vivo attL binding assay to characterize several Int variants for their abilities to form stable attL complexes. Substitution of Int active site tyrosine 342 by phenylalanine had no effect on the ability of the protein to form attL complexes. Three other amino acids that are completely conserved in the integrase family of recombinases (arginine 212, histidine 308, and arginine 311) were separately substituted by glutamine, leucine, and histidine, respectively. In each case, the mutant protein was altered in its ability to form attL complexes while retaining its ability to bind to the λ arm-type sites. We propose that, in addition to their role in catalysis, this triad of amino acids helps the Int protein to interact with the λ core sites.  相似文献   

7.
The serine integrase, Int, from the Streptomyces phage φC31 mediates the integration and excision of the phage genome into and out of the host chromosome. Integrases usually require a recombination directionality factor (RDF) or Xis to control integration and excision and, as φC31 Int only mediates integration in the absence of other phage proteins, we sought to identify a φC31 RDF. Here we report that the φC31 early protein, gp3 activated attL x attR recombination and inhibited attP x attB recombination. Gp3 binds to Int in solution and when Int is bound to the attachment sites. Kinetic analysis of the excision reaction suggested that gp3 modifies the interactions between Int and the substrates to form an active recombinase. In the presence of gp3, Int assembles an excision synaptic complex and the accumulation of the integration complex is inhibited. The structure of the excision synaptic complex, like that of the hyperactive mutant of Int, IntE449K, appeared to be biased towards one that favours the production of correctly joined products. The functional properties of φC31 gp3 resemble those of the evolutionarily unrelated RDF from phage Bxb1, suggesting that these two RDFs have arisen through convergent evolution.  相似文献   

8.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   

9.
The integrase (Int) from phage ϕC31 acts on the phage and host-attachment sites, attP and attB, to form an integrated prophage flanked by attL and attR. Excision (attL × attR recombination) is prevented, in the absence of accessory factors, by a putative coiled-coil motif in the C-terminal domain (CTD). Int has a serine recombinase N-terminal domain, required for synapsis of recombination substrates and catalysis. We show here that the coiled-coil motif mediates protein–protein interactions between CTDs, but only when bound to DNA. Although the histidine-tagged CTD (hCTD) was monomeric in solution, hCTD bound cooperatively to three of the recombination substrates (attB, attL and attR). Furthermore, when provided with attP and attB, hCTD brought these substrates together in a synaptic complex. Substitutions in the coiled-coil motif that greatly reduce Int integration activity, L460P and Y475H, prevented CTD–CTD interactions and led to defective DNA binding and no detectable DNA synapsis. A substitution, E449K, in full length Int confers the ability to perform excision in addition to integration as it has gained the ability to synapse attL × attR. hCTDE449K was similar to hCTD in DNA binding but unable to form the CTD synapse suggesting that the CTD synapse is not essential but could be part of the mechanism that controls directionality.  相似文献   

10.
Y W Han  R I Gumport    J F Gardner 《The EMBO journal》1993,12(12):4577-4584
Site-specific recombination of bacteriophage lambda starts with the formation of higher-order protein--DNA complexes, called 'intasomes', and is followed by a series of steps, including the initial DNA cleavage, top-strand exchange, branch migration and bottom-strand exchange, to produce recombinant products. One of the intasomes formed during excisive recombination (the attL complex) is composed of the phage-encoded integrase (Int), integration host factor (IHF) and one of the recombination substrates, attL DNA. Int is the catalytic recombinase and has two different DNA binding domains. When IHF is present, Int binds to two types of sites in attL DNA, the three arm-type sites (P'123) and the core-type sites (B and C') where the reciprocal strand exchange takes place. The Tyr342 residue of Int serves as a nucleophile during strand cleavage and covalently attaches to the DNA through a phosphotyrosyl bond. In vitro complementation assays have been performed for strand cleavage using attL suicide substrates and mutant proteins containing amino acid substitutions at residues conserved in the integrase family of recombinases. We demonstrate that at least two Int monomers are required to form the catalytically-competent species that performs cleavage at the B site. It is likely that the active site is formed by two Int monomers.  相似文献   

11.
Bacteriophage lambda site-specific recombination requires the formation of higher-order protein-DNA complexes to accomplish synapsis of the partner attachment (att) sites as well as for the regulation of the integration and excision reactions. The att sites are composed of a core region, the actual site of strand exchange, and flanking arm regions. The attL site consists of two core sites (C and C'), an integration host factor (IHF) binding site (H'), and three contiguous Int binding arm sites (P'1, P'2, and P'3). In this study, we employed bacteriophage P22 challenge phages to determine which protein binding sites participate in attL complex formation in vivo. The C', H', and P'1 sites were critical, because mutations in these sites severely disrupted formation of the attL complex. Mutations in the C and P'2 sites were less severe, and alteration of the P'3 site had no effect on complex formation. These results support a model in which IHF, bound to the H' site, bends the attL DNA so that the Int molecule bound to P'1 also interacts with the C' core site. This bridged complex, along with a second Int molecule bound to P'2, helps to stabilize the interaction of a third Int with the C core site. The results also indicate that nonspecific DNA binding is a significant component of the Int-core interactions and that the cooperativity of Int binding can overcome the effects of mutations in the individual arm sites and core sites.  相似文献   

12.
The activity of the Integrase (Int) protein encoded by coliphage HK022 was tested in a human cell culture. Plasmids were constructed as substrates that carry the sites of the integration reaction (attP and attB) or the sites of excision (attL and attR). The site-specific recombination reactions were monitored in cis and in trans configurations by the expression of the green fluorescent protein (GFP) as a reporter. Cells cotransfected with the substrate plasmid(s) and with a plasmid that expresses the wild-type Int show efficient integration as well as excision in both configurations. The wild-type Int was active in the human cells without the need to supply the accessory proteins integration host factor (IHF) and excisionase (Xis) that are indispensable for the reaction in the bacterial host.  相似文献   

13.
A M Segall  H A Nash 《The EMBO journal》1993,12(12):4567-4576
Bacteriophage lambda uses site-specific recombination to move its DNA into and out of the Escherichia coli genome. The recombination event is mediated by the recombinase integrase (Int) together with several accessory proteins through short specific DNA sequences known as attachment sites. A gel mobility shift assay has been used to show that, in the absence of accessory proteins, Int can align and hold together two DNA molecules, each with an attachment site, to form stable non-covalent 'bimolecular complexes'. Each attachment site must have both core and arm binding sites for Int to participate in a bimolecular complex. These stable structures can be formed between pairs of attL and attP attachment sites, but cannot include attB or attR sites; they are inhibited by integration host factor (IHF) protein. The bimolecular complexes are shown to represent a synaptic intermediate in the reaction in which Int protein promotes the IHF-independent recombination of two attL sites. These complexes should enable a detailed analysis of synapsis for this pathway.  相似文献   

14.
Bacteriophage lambda uses site-specific recombination to move its DNA into and out of the Escherichia coli genome. The recombination event is mediated by the phage-encoded integrase (Int) at short DNA sequences known as attachment ( att ) sites. Int catalyzes recombination via at least four distinct pathways, distinguishable by their requirements for accessory proteins and by the sequence of their substrates. The simplest recombination reaction catalyzed by Int does not require any accessory proteins and takes place between two attL sites. This reaction proceeds through an intermediate known as the straight-L bimolecular complex (SL-BMC), a stable complex which contains two attL sites synapsed by Int. We have investigated the orientation of the two substrates in the SL-BMC with respect to each other using two independent direct methods, a ligation assay and visualization by atomic force microscopy (AFM). Both show that the two DNA substrates in the complex are arranged in a tetrahedral or nearly square planar alignment skewed towards parallel. The DNA molecules in the complex are bent.  相似文献   

15.
The P2 Cox protein is known to repress the Pc promoter, which controls the expression of the P2 immunity repressor C. It has also been shown that Cox can activate the late promoter PLL of the unrelated phage P4. By this process, a P2 phage infecting a P4 lysogen is capable of inducing replication of the P4 genome, an example of viral transactivation. In this report, we present evidence that Cox is also directly involved in both prophage excision and phage integration. While purified Cox, in addition to P2 Int and Escherichia coli integration host factor, was required for attR x attL (excisive) recombination in vitro, it was inhibitory to attP x attB (integrative) recombination. The same amounts of Int and integration host factor which mediated optimal excisive recombination in vitro also mediated optimal integrative recombination. We quantified and compared the relative efficiencies of attB, attR, and attL in recombination with attP and discuss the functional implications of the results. DNase I protection experiments revealed an extended 70-bp Cox-protected region on the right arm of attP, centered at about +60 bp from the center of the core sequence. Gel shift assays suggest that there are two Cox binding sites within this region. Together, these data support the theory that in vivo, P2 can exert control over the direction of recombination by either expressing Int alone or Int and Cox together.  相似文献   

16.
To establish a lysogenic lifestyle, the temperate bacteriophage φC31 integrates its genome into the chromosome of its Streptomyces host, by site-specific recombination between attP (the attachment site in the phage DNA) and attB (the chromosomal attachment site). This reaction is promoted by a phage-encoded serine recombinase Int. To return to the lytic lifestyle, the prophage excises its DNA by a similar Int-mediated reaction between the recombinant sites flanking the prophage, attL and attR. φC31 Int has been developed into a popular experimental tool for integration of transgenic DNA into the genomes of eukaryotic organisms. However, until now it has not been possible to use Int to promote the reverse reaction, excision. In many other phages, the presence of a recombination directionality factor (RDF) protein biases the phage-encoded integrase towards prophage excision, whereas absence of the RDF favours integration; but the φC31 RDF had proved elusive. In this issue of Molecular Microbiology, Khaleel et al. (2011) report the identification and purification of the φC31 RDF, and show that it both promotes excision and inhibits integration by direct protein-protein interactions with Int itself.  相似文献   

17.
Excision of the lambda prophage from the chromosome of its Escherichia coli host requires the products of the two viral genes int and xis. This paper reports a purification of the lambda xis gene product using a complementation assay in which functional Xis must be added to purified Int and an E. coli-derived host factor extract. Excisive recombination between a left (attL) and right (attR) prophage attachment site cloned on the same plasmid DNA substrate occurred efficiently under these conditions. Purified Int and Xis together could not carry out excision in vitro unless an extract derived from the E. coli host was added; purified integration host factor satisfied this requirement. Xis appears to have a molecular weight of 8800 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. It possesses no detectable endonuclease or topoisomerase activities, does not appear to bind DNA to filters, and does not increase the ability of Int to bind DNA. The addition of Xis not only stimulated excisive recombination in vitro but also inhibited integrative recombination. Xis protected Int protein from heat inactivation, suggesting a possible interaction between the two proteins. In light of these observations, possible roles for Xis in recombination are discussed.  相似文献   

18.
The coronavirus membrane (M) protein carboxy tail interacts with the nucleocapsid during virus assembly. Previous studies demonstrated that the two terminal residues are important, and the charged residue (R227) in the penultimate position in the mouse hepatitis coronavirus (MHV) A59 M protein was suggested to participate in intermolecular interactions with negative charges in the nucleocapsid (N) protein. To determine the significance of the positive charge at position 227, we substituted the arginine with lysine (K), aspartic acid (D), glutamic acid (E), or alanine (A) and studied these by reverse genetics in the context of a MHV full-length infectious clone. Viruses with wild-type phenotype were readily recovered with the K or A substitutions. In contrast, negative-charge substitutions were not tolerated as well. In all recovered R227D viruses the negative charge was replaced with heterologous residues resulting from apparent template switching during negative-strand synthesis of subgenomic RNA 7. An additional second-site compensatory V202I substitution was present in some viruses. Recovered R227E viruses had second-site changes within the M protein carboxy tail that were partially compensatory. Significantly, most of the second site changes in the R227E mutant viruses were previously shown to compensate for the removal of negative charges in the N protein. Our results strongly indicate that a positive charge is not absolutely required. It is clear that other regions within the tail must also be involved in helping mediate interactions between the M protein and the nucleocapsid.  相似文献   

19.
Human parainfluenza virus type 2 (HPIV-2), an important pediatric respiratory pathogen, encodes a V protein that inhibits type I interferon (IFN) induction and signaling. Using reverse genetics, we attempted the recovery of a panel of V mutant viruses that individually contained one of six cysteine-to-serine (residues 193, 197, 209, 211, 214, and 218) substitutions, one of two paired charge-to-alanine (R175A/R176A and R205A/K206A) substitutions, or a histidine-to-phenylalanine (H174F) substitution. This mutagenesis was performed using a cDNA-derived HPIV-2 virus that expressed the V and P coding sequences from separate mRNAs. Of the cysteine substitutions, only C193S, C214S, and C218S yielded viable virus, and only the C214S mutant replicated well enough for further analysis. The H174F, R175A/R176A, and R205A/K206A mutants were viable and replicated well. The H174F and R205A/K206A mutants did not differ from the wild-type (WT) V in their ability to physically interact with MDA5, a cytoplasmic sensor of nonself RNA that induces type I IFN. Like WT HPIV-2, these mutants inhibited IFN-β induction and replicated efficiently in African green monkeys (AGMs). In contrast, the C214S and R175A/R176A mutants did not bind MDA5 efficiently, did not inhibit interferon regulatory factor 3 (IRF3) dimerization or IFN-β induction, and were attenuated in AGMs. These findings indicate that V binding to MDA5 is important for HPIV-2 virulence in nonhuman primates and that some V protein residues involved in MDA5 binding are not essential for efficient HPIV-2 growth in vitro. Using a transient expression system, 20 additional mutant V proteins were screened for MDA5 binding, and the region spanning residues 175 to 180 was found to be essential for this activity.  相似文献   

20.
The genome of the Streptomyces temperate phage phiC31 integrates into the host chromosome via a recombinase belonging to a novel group of phage integrases related to the resolvase/invertase enzymes. Previously, it was demonstrated that, in an in vitro recombination assay, phiC31 integrase catalyses integration (attP/attB recombination) but not excision (attL/attR). The mechanism responsible for this recombination site selectivity was therefore investigated. Purified integrase was shown to bind with similar apparent binding affinities to between 46 bp and 54 bp of DNA at each of the attachment sites, attP, attB, attL and attR. Assays using recombination sites of 50 bp and 51 bp for attP and attB, respectively, showed that these fragments were functional in attP/attB recombination and maintained strict site selectivity, i.e. no recombination between non-permissive sites, such as attP/attP, attB/attL, etc., was observed. Using bandshifts and supershift assays in which permissive and non-permissive combinations of att sites were used in the presence of integrase, only the attP/attB combination could generate supershifts. Recombination products were isolated from the supershifted complexes. It was concluded that these supershifted complexes contained the recombination synapse and that site specificity, and therefore directionality, is determined at the level of stable synapse formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号