首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
丙型肝炎病毒是与输血有关的非甲非乙肝病毒[1] ;是全世界输血后获得性肝炎的重要病因之一 ,并与急慢性肝炎、肝硬化和肝癌有关。由于主要通过输血的传播 ,会给人民的身体健康尤其输血事业带来极大危害。采用基因工程技术 ,表达含有多段抗原的融合蛋白作为HCV检测试剂的抗原 ,可以简化多种抗原的表达及纯化过程 ,并提高了试剂的均一性[2 ] 。研究表明 ,在HCV的抗原基因中 ,核心蛋白Core、NS3区的C33c抗原、NS4区基因编码的抗原免疫原性最强 ,相应抗体出现早 ,分布广 ,亲和力强。因此 ,我们构建了含有中国人HCV序列的Co…  相似文献   

2.
Q丙型肝炎是由丙型肝炎病毒(HCV)引起的一种严重的传染病。丙型肝炎病毒主要通过输血和应用不洁的血液制品传播,所以利用敏感、特异的检测方法筛选献血员对丙型肝炎的预防尤为重要。现在第二代HCV检测试剂已大批应用,加入NS5A抗原的第三代试剂也正在研制中...  相似文献   

3.
在急慢性输血后肝炎、散发性肝炎及爆发型肝炎中,大约10~20%的病人不属于已发现的A~E型肝炎,提示存在新型肝炎病毒。在美国1995年第46届医学年会上,已有了一些有关庚型肝炎病毒(HGV)分子生物学及庚型肝炎血清学方面的摘要报道。1996年初Lin...  相似文献   

4.
河北省丙型肝炎病毒基因分型研究   总被引:1,自引:0,他引:1  
丙型肝炎病毒 (Hepatitis C virus, HCV)感染是输血后肝炎的主要原因[1],主要通过输血或使用污染的血制品传播[2],且与肝硬化和肝细胞癌的发生有密切关系.  相似文献   

5.
重组HCV NS5区蛋白抗原在丙型肝炎检测中的应用   总被引:2,自引:1,他引:1  
对HCV NS5区部分基因进行了克隆表达,获得优质NS5区蛋白抗原。通过对不同人群抗-NS5检测表明,随访3年和6年的输血后丙肝病例抗-NS5阳性率分别为70.5%和80.9%,随访8年和11年慢性丙肝病例分别为50.7%和82.4%。一般人群阳性率仅为1.7%,正常献血员中未检出阳性。  相似文献   

6.
呼吸道合胞病毒(reespiratory syncytial virus,RSV)是引起婴幼儿和老年人下呼吸道感染的重要病原体之一.由于该病毒的致病机理还不太清楚导致目前尚无有效治疗RSV的方法.研究表明,呼吸道合胞病毒的非结构蛋白NS1、NS2具有抗细胞凋亡的作用,同时可以逃避宿主免疫系统(IFN)对病毒的干扰,有利于病毒复制.敲除这两种基因的减毒活疫苗和袁达沉默NS1的小干扰RNA(siRNA)的质粒研究已经取得了一定的进展.对非结构蛋白功能的深入研究有助于了解RSV的致病机理,同时为预防和治疗RSV感染奠定理论基础.  相似文献   

7.
对同一地区两例输血后丙型肝炎进行PCR分型,结果为Ⅱ型。分别将其NS5区基因部分片段克隆到pUC18和M13mp18中,序列分析结果表明在NS5区基因相同区段,二者的核苷酸同源性为89.04%,氨基酸同源性为90.75%。而且在分离株V中第70 ̄72位发现阅读框内终止密码子TGA。与Ⅱ型代表株HCV BK序列相比,相同区段的核苷酸和氨基酸同源性分别为:91.5%,91.92%和91.91%,91.  相似文献   

8.
丙型肝炎病毒NS5A蛋白的生物学调节作用   总被引:25,自引:0,他引:25  
丙型肝炎病毒(HCV)是一种正链RNA病毒,基因的编码产物包括10余种结构和非结构蛋白等.NS5A是HCV编码的一种非结构蛋白,在酪蛋白激酶Ⅱ(CK Ⅱ)的催化作用下发生磷酸化修饰.在某些情况下,HCV NS5A的变异与干扰素(IFN)治疗的敏感性有关.NS5A与双链RNA蛋白激酶(PKR)之间的结合不仅与IFN的敏感性有关,而且与感染HCV的细胞发生恶性转化的过程有关.与正常细胞恶性转化有关的机制,还包括NS5A对生长因子受体结合蛋白(Grb2)?接头蛋白、细胞周期及细胞增殖的调节等环节.  相似文献   

9.
目的 分析输血科技术人员工作中面临的心理压力,探讨减轻输血科技术人员心理压力的有效措施.方法 以信函调查的方式,对在3家医院输血科工作的18名技术人员进行问卷调查.结果 输血科技术人员在工作性质、劳动强度、社会环境、经济待遇方面都存在不同程度的压力.结论 输血科技术人员存在较大的心理压力,应采取有力措施,营造一个良好的工作生活环境,帮助其减轻心理压力.  相似文献   

10.
对同一地区两例输血后丙型肝炎进行PCR分型,结果为Ⅱ型。分别将其NS5区基因部分片段克隆到pUC18和M13mp18中,序列分析结果表明在NS5区基因相同区段,二者的核苷酸同源性为89.04%,氨基酸同源性为90.75%。而且在分离株V中第70~72位发现阅读框内终止密码子TGA。与Ⅱ型代表株HCVBK序列相比,相同区段的核苷酸和氨基酸同源性分别为:91.5%,91.92%和91.91%,91.91%。对比分析表明,在同一地区基因型相同的不同分离株间NS5区基因仍存在较大变异,分离株V可能为缺陷性病毒  相似文献   

11.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.  相似文献   

12.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

13.
The nonstructural protein NS5A of hepatitis c virus (HCV) has been demonstrated to be a phosphoprotein with an apparent molecular mass of 56 kDa. In the presence of other viral proteins, p56 is converted into a slower-migrating form of NS5A (p58) by additional phosphorylation events. In this report, we show that the presence of NS3, NS4A, and NS4B together with NS5A is necessary and sufficient for the generation of the hyperphosphorylated form of NS5A (p58) and that all proteins must be encoded on the same polyprotein (in cis). Kinetic studies of NS5A synthesis and pulse-chase experiments demonstrate that fully processed NS5A is the substrate for the formation of p58 and that p56 is converted to p58. To investigate the role of NS3 in NS5A hyperphosphorylation, point and deletion mutations were introduced into NS3 in the context of a polyprotein containing the proteins from NS3 to NS5A. Mutation of the catalytic serine residue into alanine abolished protease activity of NS3 and resulted in total inhibition of NS5A hyperphosphorylation, even if polyprotein processing was allowed by addition of NS3 and NS4A in trans. The same result was obtained by deletion of the first 10 or 28 N-terminal amino acids of NS3, which are known to be important for the formation of a stable complex between NS3 and its cofactor NS4A. These data suggest that the formation of p58 is closely connected to HCV polyprotein processing events. Additional data obtained with NS3 containing the 34 C-terminal residues of NS2 provide evidence that in addition to NS3 protease activity the authentic N-terminal sequence is required for NS5A hyperphosphorylation.  相似文献   

14.
15.
The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm. By 16 h, at the end of the latent period, all patterns had changed to some discrete perinuclear foci associated with a thick cytoplasmic reticulum. By 24 h, this localization in perinuclear foci was more apparent and some foci were dual labelled with antibodies to dsRNA. In immuno-gold-labelled cryosections of infected cells at 24 h, all antibodies were associated with clusters of induced membrane structures in the perinuclear region. Two important and novel observations were made. First, one set of induced membranes comprised vesicle packets of smooth membranes dual labelled with anti-dsRNA and anti-NS1 or anti-NS3 antibodies. Second, adjacent masses of paracrystalline arrays or of convoluted smooth membranes, which appeared to be structurally related, were strongly labelled only with anti-NS2B and anti-NS3 antibodies. Paired membranes similar in appearance to the rough endoplasmic reticulum were also labelled, but less strongly, with antibodies to the three nonstructural proteins. Other paired membranes adjacent to the structures discussed above enclosed accumulated virus particles but were not labelled with any of the four antibodies. The collection of induced membranes may represent virus factories in which translation, RNA synthesis, and virus assembly occur.  相似文献   

16.
Numerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.  相似文献   

17.
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain. Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease activation by NS3 are poorly understood. Here, we report the identification of a conserved hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue within this surface region is also critical for RNA replication and NS5A hyperphosphorylation, two processes known to depend on functional replicase assembly. This dual function of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prerequisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to replicase assembly. Based on our data, we propose a sequential cascade of molecular events: in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this surface region becomes available for functional replicase assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA replication. According to our model, the hydrophobic surface patch on NS3 represents a module critically involved in the temporal coordination of HCV replicase assembly.  相似文献   

18.
We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.  相似文献   

19.
Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection.Here we demonstrate that artificial up-regulation of fatty acid biosynth...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号