首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.  相似文献   

2.
Glycine betaine is a potent osmotic and thermal stress protectant of many microorganisms. Its synthesis from glycine results in the formation of the intermediates monomethylglycine (sarcosine) and dimethylglycine (DMG), and these compounds are also produced when it is catabolized. Bacillus subtilis does not produce sarcosine or DMG, and it cannot metabolize these compounds. Here we have studied the potential of sarcosine and DMG to protect B. subtilis against osmotic, heat, and cold stress. Sarcosine, a compatible solute that possesses considerable protein-stabilizing properties, did not serve as a stress protectant of B. subtilis. DMG, on the other hand, proved to be only moderately effective as an osmotic stress protectant, but it exhibited good heat stress-relieving and excellent cold stress-relieving properties. DMG is imported into B. subtilis cells primarily under osmotic and temperature stress conditions via OpuA, a member of the ABC family of transporters. Ligand-binding studies with the extracellular solute receptor (OpuAC) of the OpuA system showed that OpuAC possesses a moderate affinity for DMG, with a Kd value of approximate 172 μM; its Kd for glycine betaine is about 26 μM. Docking studies using the crystal structures of the OpuAC protein with the sulfur analog of DMG, dimethylsulfonioacetate, as a template suggest a model of how the DMG molecule can be stably accommodated within the aromatic cage of the OpuAC ligand-binding pocket. Collectively, our data show that the ability to acquire DMG from exogenous sources under stressful environmental conditions helps the B. subtilis cell to cope with growth-restricting osmotic and temperature challenges.  相似文献   

3.
A J Hoorn 《Mutation research》1989,222(4):343-350
Dimethylglycine (DMG) and the chemically related amino acids glycine, sarcosine (monomethylglycine) and betaine (trimethylglycine) were tested in Salmonella typhimurium strain TA100 after treatment with sodium nitrite under acidic conditions using a modified Ames Salmonella/microsome assay as reported by Colman et al. (1980). The increase in the number of revertants observed both with and without metabolic activation was also induced in the control mixtures without adding the amines. From the subsequent testing of the individual components of the mixtures, we concluded that non-consumed nitrite was responsible for the mutagenic responses observed in the different reaction mixtures, and not the amines themselves. There were no consistent indications of mutagenic activity of the DMG test mixture as compared to the control mixture which exhibited both consistent mutagenic activity and a toxic effect which was not increased by the addition of DMG. In fact, DMG seemed to decrease the toxicity of the control reaction solution to the Salmonella which was clearly observed at the higher doses. DMG cannot be considered mutagenic under the test conditions employed. The same can be said of the other amino acids as well.  相似文献   

4.
A search was undertaken for osmoprotective compounds for mouse hybridoma cell line 6H11 grown in culture. When the osmolality of the growth medium was increased above the normal osmolality of 330 mOsmol/kg, growth rates were decreased in a dose-dependent fashion, reaching zero when the osmolality of the medium reached approx. 435 mOsmol/kg through the addition of KCl (60 mM), or 510 mOsmol/kg through the addition of NaCl (100 mM), or sucrose (175 mM). For NaCl or sucrose-stressed cultures, the inclusion of glycine betaine, sarcosine, proline, glycine, or asparagine in the growth medium gave a moderate to strong osmoprotective effect, measured as the ability of these compounds to enhance cell growth rates under hyperosmotic conditions. Inclusion of dimethylglycine may also give a strong osmoprotective effect under these stress conditions.In KCl-stressed cell cultures, addition of glycine betaine, sarcosine, or dimethylglycine gave strong osmoprotective effects. Of 38 compounds tested during NaCl stress, 7 gave weak osmoprotective effects and 25 gave no osmoprotective effect. The osmoprotective compounds accumulated inside the stressed cells. Accumulation was completed after 4 to 8 h, reaching intracellular concentrations of approx. 0.27 pmol/cell, or 0.15 M, in NaCl stressed cells (100 mM NaCl added).Glycine betaine, dimethylglycine, and sarcosine accumulation was observed only when these protectants were included in the medium. For all osmoprotectants, a growth medium concentration between 5 and 30 mM gave the maximal protective effect, with the exception of dimethylglycine, for which the optimum concentration was approx. 65 mM. Osmoprotective effects obtained with glycine, sarcosine, dimethylglycine, and glycine betaine, indicate that the more methylated compounds are the most effective protectants.The cellular content of glycine betaine and the glycine betaine uptake rate increased with medium osmolality in a linear fashion. Glycine betaine uptake was described by a model comprising a saturable component obeying Michaelis-Menten kinetics and a nonsaturable component. K(m) and V(max) for glycine betaine uptake were determined at 420 mOsmol/kg (50 mM NaCl added) and 510 mOsmol/kg (100 mM NaCl added). A K(m) value of approx. 2.5 mM was obtained at both medium osmolalities, while V(max) increased from 0.010 pmol/cell . h to 0.018 pmol/cell . h as the osmolality of the growth medium was increased, indicating an effect of medium osmolality on the maximal rate of transport rather than on the affinity of the transporters for glycine betaine. Hybridoma cells were not able to utilize the glycine betaine precursors choline or glycine betaine aldehyde for osmoprotection, suggesting that the cells lack part, or all, of the choline-glycine betaine pathway or the appropriate uptake mechanism.The uptake rate for glycine in NaCl-stressed hybridoma cells was approx. four times higher than the uptake rate for glycine betaine. Furthermore, if equimolar amounts of glycine betaine, glycine, sarcosine, and proline were simultaneously added to NaCl-stressed cell cultures, the intracellular concentrations of glycine, proline, and sarcosine were significantly higher than the concentration of glycine betaine.A 40% increase in hybridoma cell volume was observed when the growth medium osmolality was increased from 300 to 520 mOsmol/kg. (c) 1994 John Wiley & Sons, Inc.  相似文献   

5.
The obligate anaerobe Eubacterium acidaminophilum metabolized the glycine derivatives sarcosine (N-monomethyl glycine) and betaine (N-trimethyl glycine) only by reduction in a reaction analogous to glycine reductase. Using formate as electron donor, sarcosine and betaine were stoichiometrically reduced to acetate and methylamine or trimethylamine, respectively. The N-methyl groups of the cosubstrates or of the amines produced were not transformed to CO2 or acetate. Under optimum conditions (formate/acceptor ratio of 1 to 1.2, 34°C, pH 7.3) the doubling times were 4.2 h on formate/sarcosine and 3.6 h on formate/betaine. The molar growth yields were 8.15 and 8.5 g dry cell mass per mol sarcosine and betaine, respectively. The assays for sarcosine reductase and betaine reductase were optimized in cell extracts; NADPH was preferred as physiological electron donor compared to NADH, dithioerythritol was used as artificial donor; no requirements for AMP and ADP could be detected. Growth experiments mostly revealed diauxic substrate utilization pattern using different combinations of glycine, sarcosine, and betaine (plus formate) and inocula from different precultures. Glycine was always utilized first, what coincided with the presence of glycine reductase activity under all growth conditions except for serine as substrate. Sarcosine reductase and betaine reductase were only induced when E. acidaminophilum was grown on sarcosine and betaine, respectively. Creatine was metabolized via sarcosine. [75Se]-selenite labeling revealed about the same pattern of predominant labeled proteins in glycine-, sarcosine-, and betaine-grown cells.Abbreviations DTE dithioerythritol - TES N-Tris (hydroxymethyl) methyl-2-amino-ethane sulfonic acid  相似文献   

6.
Addition of osmoprotective compounds has a positive effect on growth and monoclonal antibody production in hyperosmotic hybridoma cell cultures. In order to better understand the processes involved in the osmoprotective response, uptake of the osmoprotective compounds glycine betaine, proline, sarcosine and glycine in mouse hybridoma cell line 6H11 during exposure to hyperosmotic stress was studied. Hyperosmotic stress (510 mOsmol/kg) was introduced through the addition of NaCl (100 mM) to the growth medium, and amino acid transport activity was measured immediately after transfer of the cells to the hyperosmotic medium. The osmoprotective capability of the four osmoprotectants tested was negatively affected if methylaminosobutyric acid (MeAiB), a specific substrate for amino acid transport system A, was simultaneously included in the hyperosmotic medium in equimolar amounts with one of the osmoprotective compounds. This was due to accumulation of MeAiB in the stressed cells, giving a significant reduction in the concentration of the osmoprotective compound inside the cells. Furthermore, addition of excess meAiB gave approx. 905 reduction in the initial rate of uptake of glycine betaine, while 40–50% reduction in the initial rate of uptake of proline, glycine and sarcosine. Similarly, addition of proline, glycine or sarcosine also gave a significant reduction in the initial rate of glycine betaine uptake. These results suggest that the four osmoprotective compounds share, at least in part, a common, MeAiB inhibitable carrier for transport into osmotically stressed hybridoma cells. This carrier is probably equal to amino acid transport system A.  相似文献   

7.
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize de novo and accumulate β-glutamine, N-acetyl-β-lysine, and glycine betaine (betaine) as compatible solutes (osmolytes) when grown at elevated salt concentrations. Both in vivo and in vitro betaine formation assays in this study confirmed previous nuclear magnetic resonance 13C-labelling studies showing that the de novo synthesis of betaine proceeded from glycine, sarcosine, and dimethylglycine to form betaine through threefold methylation. Exogenous sarcosine (1 mM) effectively suppressed the intracellular accumulation of betaine, and a higher level of sarcosine accumulation was accompanied by a lower level of betaine synthesis. Exogenous dimethylglycine has an effect similar to that of betaine addition, which increased the intracellular pool of betaine and suppressed the levels of N-acetyl-β-lysine and β-glutamine. Both in vivo and in vitro betaine formation assays with glycine as the substrate showed only sarcosine and betaine, but no dimethylglycine. Dimethylglycine was detected only when it was added as a substrate in in vitro assays. A high level of potassium (400 mM and above) was necessary for betaine formation in vitro. Interestingly, no methylamines were detected without the addition of KCl. Also, high levels of NaCl and LiCl (800 mM) favored sarcosine accumulation, while a lower level (400 mM) favored betaine synthesis. The above observations indicate that a high sarcosine level suppressed multiple methylation while dimethylglycine was rapidly converted to betaine. Also, high levels of potassium led to greater amounts of betaine, while lower levels of potassium led to greater amounts of sarcosine. This finding suggests that the intracellular levels of both sarcosine and potassium are associated with the regulation of betaine synthesis in M. portucalensis.  相似文献   

8.
The halophilic methanogen Methanohalophilus portucalensis synthesizes three distinct zwitterions, (beta)-glutamine, N(sup(epsilon))-acetyl-(beta)-lysine (NA(beta)Lys), and glycine betaine, as osmolytes when it is grown at high concentrations of external NaCl. The selective distribution of these three species was determined by growing cells in the presence of osmolyte biosynthetic precursors. Glycine betaine is formed by the stepwise methylation of glycine. Exogenous glycine (10 mM) and sarcosine (10 mM), although internalized, do not bias the cells to accumulate any more betaine. However, exogenous N,N-dimethylglycine (10 mM) is available to the appropriate methyltransferase and the betaine generated from it suppresses the synthesis of other osmolytes. Precursors of the two zwitterionic (beta)-amino acids ((beta)-glutamate for (beta)-glutamine and (alpha)-lysine and diaminopimelate for NA(beta)Lys) have only small effects on (beta)-amino acid accumulation. The largest effect is provided by L-(alpha)-glutamine, suggesting that nitrogen assimilation is a key factor in osmolyte distribution.  相似文献   

9.
The accumulation of the cosolutes ethylene glycol, urea, glycine, sarcosine, and glycine betaine at the single-stranded DNA surface exposed upon melting the double helix has been quantified for DNA samples of different guanine-cytosine (GC) content using the local-bulk partitioning model [Record, M. T., Jr., Zhang, W., and Anderson, C. F. (1998) Adv. Protein Chem. 51, 281-353]. Urea and ethylene glycol are both locally accumulated at single-stranded DNA relative to bulk solution. Urea exhibits a stronger affinity for adenine (A) and thymine (T) bases, leading to a greater net dehydration of these bases upon DNA melting; ethylene glycol local accumulation is practically independent of base composition. However, glycine, sarcosine, and glycine betaine are not necessarily locally accumulated at single strands after melting relative to bulk solution, although they are locally accumulated relative to double-stranded DNA. The local accumulation of glycine, sarcosine, and glycine betaine at single strands relative to double-stranded DNA decreases with bulk cosolute molality and increases with GC content for all N-methylated glycines, demonstrating a stronger affinity for G and C bases. Glycine also shows a minimum in melting temperature T(m) at 1-2 m for DNA samples of 50% GC content or less. Increasing ionic strength attenuates the local accumulation of urea, glycine, sarcosine, and glycine betaine and removes the minimum in T(m) with glycine. This attenuation in local accumulation results in counterion release during the melting transition that is dependent on water activity and, hence, cosolute molality.  相似文献   

10.
Glycine betaine plays an important role in some plants, including maize, in conditions of abiotic stress, but different maize varieties vary in their capacity to accumulate glycine betaine. An elite maize inbred line DH4866 was transformed with the betA gene from Escherichia coli encoding choline dehydrogenase (EC 1.1.99.1), a key enzyme in the biosynthesis of glycine betaine from choline. The transgenic maize plants accumulated higher levels of glycine betaine and were more tolerant to drought stress than wild-type plants (non-transgenic) at germination and the young seedling stage. Most importantly, the grain yield of transgenic plants was significantly higher than that of wild-type plants after drought treatment. The enhanced glycine betaine accumulation in transgenic maize provides greater protection of the integrity of the cell membrane and greater activity of enzymes compared with wild-type plants in conditions of drought stress.  相似文献   

11.
Glycine betaine (N,N,N-trimethylglycine) is an important osmoprotectant and is synthesized in response to abiotic stresses. Although almost all known biosynthetic pathways of betaine are two-step oxidation of choline, here we isolated two N-methyltransferase genes from a halotolerant cyanobacterium Aphanothece halophytica. One of gene products (ORF1) catalyzed the methylation reactions of glycine and sarcosine with S-adenosylmethionine acting as the methyl donor. The other one (ORF2) specifically catalyzed the methylation of dimethylglycine to betaine. Both enzymes are active as monomers. Betaine, a final product, did not show the feed back inhibition for the methyltransferases even in the presence of 2 m. A reaction product, S-adenosyl homocysteine, inhibited the methylation reactions with relatively low affinities. The co-expressing of two enzymes in Escherichia coli increased the betaine level and enhanced the growth rates. Immunoblot analysis revealed that the accumulation levels of both enzymes in A. halophytica cells increased with increasing the salinity. These results indicate that A. halophytica cells synthesize betaine from glycine by a three-step methylation. The changes of amino acids Arg-169 to Lys or Glu in ORF1 and Pro-171 to Gln and/or Met-172 to Arg in ORF2 significantly decreased V(max) and increased K(m) for methyl acceptors (glycine, sarcosine, and dimethylglycine) but modestly affected K(m) for S-adenosylmethionine, indicating the importance of these amino acids for the binding of methyl acceptors. Physiological and functional properties of methyltransferases were discussed.  相似文献   

12.
The genes encoding the three subunits of the primary ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei G?1 were cloned in an expression vector (pBAD24) and transformed into the glycine betaine transport-negative mutant Escherichia coli MKH13. Ota was produced as demonstrated by Western blotting. Uptake studies revealed that Ota catalyzed the transport of glycine betaine in E. coli MKH13(pBAD-Ota) with a K(m) of 10+/-5 microM and a maximal velocity of 1.5+/-0.5 nmol min(-1) mg protein(-1). Transport was ATP dependent. Ota was activated by salinity gradients, but only marginally by sugar gradients across the membrane. Glycine betaine transport was inhibited to a small extent by an excess of dimethylglycin or proline betaine, but not by sarcosine or glycine.  相似文献   

13.
Dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) are flavoproteins which catalyze the oxidative demethylation of dimethylglycine to sarcosine and sarcosine to glycine, respectively. During these reactions tightly bound tetrahydropteroylpentaglutamate (H4PteGlu5) is converted to 5,10-methylene tetrahydropteroylpentaglutamate (5,10-CH2-H4PteGlu5), although in the absence of H4PteGlu5, formaldehyde is produced. Single turnover studies using substrate levels of the enzyme (2.3 microM) showed pseudo-first-order kinetics, with apparent first-order rate constants of 0.084 and 0.14 s-1 at 23 and 48.3 microM dimethylglycine, respectively, for dimethylglycine dehydrogenase and 0.065 s-1 at 47.3 microM sarcosine for sarcosine dehydrogenase. The rates were identical in the absence or presence of bound tetrahydropteroylglutamate (H4PteGlu). Titration of the enzymes with substrate under anaerobic conditions did not disclose the presence of an intermediate semiquinone. The effect of dimethylglycine concentration upon the rate of the dimethylglycine dehydrogenase reaction under aerobic conditions showed nonsaturable kinetics suggesting a second low-affinity site for the substrate which increases the enzymatic rate. The Km for the high-affinity active site was 0.05 mM while direct binding for the low-affinity site could not be measured. Sarcosine and dimethylthetin are poor substrates for dimethylglycine dehydrogenase and methoxyacetic acid is a competitive inhibitor at low substrate concentrations. At high dimethylglycine concentrations, increasing the concentration of methoxyacetic acid produces an initial activation and then inhibition of dimethylglycine dehydrogenase activity. When these compounds were added in varying concentrations to the enzyme in the presence of dimethylglycine, their effects upon the rate of the reaction were consistent with the presence of a second low-affinity binding site on the enzyme which enhances the reaction rate. When sarcosine is used as the substrate for sarcosine dehydrogenase the kinetics are Michaelis-Menten with a Km of 0.5 mM for sarcosine. Also, methoxyacetic acid is a competitive inhibitor of sarcosine dehydrogenase with a Ki of 0.26 mM. In the absence of folate, substrate and product determinations indicated that 1 mol of formaldehyde and of sarcosine or glycine were produced for each mole of dimethylglycine or sarcosine consumed with the concomitant reduction of 1 mol of bound FAD.  相似文献   

14.
A total of 15 rhizobial strains representing Rhizobium meliloti, Rhizobium japonicum, Rhizobium trifolii, Rhizobium leguminosarum, Rhizobium sp. (Sesbania rostrata) and Rhizobium sp. (Hedysarum coronarium), were studied with regard to growth rate under salt stress in defined liquid media. In the presence of inhibitory concentrations of NaCl, enhancement of growth resulting from added glycine betaine was observed for R. meliloti strains and Rhizobium sp. (Hedysarum coronarium) but not for other Rhizobium species. The concentration of glycine betaine required for maximal growth stimulation was very low (1 mM) in comparison with the osmolarity of the medium. The stimulation was shown to be independent of any specific solutes. Other related compounds like proline betaine, carnitine, choline, -butyrobetaine and pipecolate betaine were also effective compounds in restoring the growth rate of cells grown in medium of elevated osmolarity. High rate of glycine betaine uptake was demonstrated in R. meliloti cells grown in media of increased osmotic strength. The intracellular concentration of this solute was found to be 308 mM in 0.3 M NaCl-grown cells and 17 times lower in minimal medium-grown cells. Glycine betaine was used for growth under conditions of low osmolarity but could not serve as sole carbon or nitrogen source in medium of increased osmotic strength. Experiments with [14C]glycine betaine showed that this molecule was not metabolized by cells subjected to osmotic stress, whereas it was rapidly converted to dimethylglycine, sarcosine and glycine in minimal medium-grown cells.Abbreviations LAS lactate-aspartate-salts - LGS lactate-glutamate-salts - LS lactate-succinate - MSY mannitol-salts-yeast - YLS yeast-lactate-succinate  相似文献   

15.
Glycine betaine is accumulated in cells living in high salt concentrations to balance the osmotic pressure. Glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) of Ectothiorhodospira halochloris catalyze the threefold methylation of glycine to betaine, with S-adenosylmethionine acting as the methyl group donor. These methyltransferases were expressed in Escherichia coli and purified, and some of their enzymatic properties were characterized. Both enzymes had high substrate specificities and pH optima near the physiological pH. No evidence of cofactors was found. The enzymes showed Michaelis-Menten kinetics for their substrates. The apparent K(m) and V(max) values were determined for all substrates when the other substrate was present in saturating concentrations. Both enzymes were strongly inhibited by the reaction product S-adenosylhomocysteine. Betaine inhibited the methylation reactions only at high concentrations.  相似文献   

16.
Choline is abundantly produced by eukaryotes and plays an important role as a precursor of the osmoprotectant glycine betaine. In Pseudomonas aeruginosa, glycine betaine has additional roles as a nutrient source and an inducer of the hemolytic phospholipase C, PlcH. The multiple functions for glycine betaine suggested that the cytoplasmic pool of glycine betaine is regulated in P. aeruginosa. We used (13)C nuclear magnetic resonance ((13)C-NMR) to demonstrate that P. aeruginosa maintains both choline and glycine betaine pools under a variety of conditions, in contrast to the transient glycine betaine pool reported for most bacteria. We were able to experimentally manipulate the choline and glycine betaine pools by overexpression of the cognate catabolic genes. Depletion of either the choline or glycine betaine pool reduced phospholipase production, a result unexpected for choline depletion. Depletion of the glycine betaine pool, but not the choline pool, inhibited growth under conditions of high salt with glucose as the primary carbon source. Depletion of the choline pool inhibited growth under high-salt conditions with choline as the sole carbon source, suggesting a role for the choline pool under these conditions. Here we have described the presence of a choline pool in P. aeruginosa and other pseudomonads that, with the glycine betaine pool, regulates osmoprotection and phospholipase production and impacts growth under high-salt conditions. These findings suggest that the levels of both pools are actively maintained and that perturbation of either pool impacts P. aeruginosa physiology.  相似文献   

17.
From 60 species of the genus Clostridium tested 26 species were able to degrade one to three of the following compounds: betaine, choline, creatine, and ethanolamine. Degradation of betaine and choline was always associated with the formation of trimethylamine as one of the products. Creatine was converted to N-methylhydantoin and with one species (Clostridium sordellii) to sarcosine in addition. The diagnostic value of the ability of clostridial species to degrade the compounds mentioned is discussed. N,N-dimethylglycine, N,N-dimethylethanolamine or sarcosine were not metabolized by the strains tested.  相似文献   

18.
L.M. REESE, K.O. CUTLER AND C.E. DEUTCH. 1996. The sensitivity of wild-type Escherichia coli K-12 to a series of proline analogues was determined in cultures containing increasing concentrations of NaCl under both aerobic and anaerobic conditions. The bacteria were most sensitive to L-azetidine-2–carboxylate and L-thiazolidine-4–carboxylate. The minimum inhibitory concentrations for these compounds decreased progressively during osmotic stress, but the bacteria were much more sensitive to these proline analogues under aerobic conditions than during anaerobiosis. The reduced sensitivity under anaerobic conditions did not reflect degradation of the compounds in the culture medium. Since both urine and medullary renal tissue contain relatively low oxygen concentrations, these results raise doubts about the potential use of proline or glycine betaine analogues in treating urinary tract infections.  相似文献   

19.
Beer can inhibit the mutagenicity of the sanma-fish mutagen, 2-chloro-4-methylthiobutanoic acid (CMBA) in Salmonella typhimurium TA100 and TA1535. The antimutagenic component was isolated from beer and identified as glycine betaine, a compound known to be distributed widely in plants and animals including humans. Beer also contains components that interfere the antimutagenic action of glycine betaine. Glycine betaine seems to antagonize CMBA in a specific manner, since several other direct-acting mutagens tested were not subject to inhibition by glycine betaine. CMBA was stable in the presence of glycine betaine under neutral conditions. Since a treatment of Salmonella with glycine betaine before the bacteria was exposed to CMBA resulted in inhibition of the mutagenesis, the antimutagenic action of glycine betaine may be taking place inside the cells. These observations suggest that the mutagenic action of CMBA may be modified by the presence of both extracellular and intracellular glycine betaine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号