首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Abstract

Adult stem cell niches are characterized by a dichotomy of cycling and quiescent stem cells: while the former are responsible for tissue turnover, their quiescent counterparts are thought to become active upon tissue injury thus underlying the regenerative response. Moreover, quiescence prevents adult stem cells from accumulating mutations thus ensuring a reservoir of unaltered stem cells. In the intestine, while cycling stem cells were shown to give rise to the main differentiated lineages, the identity of their quiescent equivalents remains to date elusive. This is of relevance for conditions such as Crohn's disease and ulcerative colitis where quiescent stem cells may underlie metaplasia and the increased cancer risk associated with chronic inflammation. Tumours are thought to share a comparable hierarchical structure of adult tissues with pluripotent and self-renewing cancer stem cells (CSCs) giving rise to more differentiated cellular types. As such, neoplastic lesions may encompass both cycling and quiescent CSCs. Because of their infrequent cycling, quiescent CSCs are refractory to chemo- and radiotherapy and are likely to play a role in tumour dissemination, dormancy and recurrence.  相似文献   

2.
BackgroundEpigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC.Scope of reviewThe distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs.Major conclusionCSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs.General significanceCharacterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.  相似文献   

3.
Developments in adult stem cell (ASC) potentiation have contributed to excitement in the field of stem cell-based therapy. The use of ASCs not only increases therapeutic treatment possibilities but successful use of multipotent cells for gene therapy has been demonstrated in animal models [1]. Concurrent ability of stem cells (SCs) to either contribute to disease development, as identified in cancer stem cells (CSCs), or to replace diseased tissue by induced differentiation using selected growth factors, has highlighted the intricate molecular and cellular mechanisms. Adipose derived stem cells (ADSCs) are capable of self-renewal and respond well to induced differentiation [2]. Auto-immunity and transplant rejection may become minor limitations when selective induction of immunological nonresponsiveness to specific antigens or tissues become possible using autologous cell sources [3]. CSCs initiate tumorogenesis, can generate differentiated daughter cells or undergo self-renewal while thought to instigate tumour regeneration post-treatment. Therapy targeting CSCs has failed to provide feasible alternatives to conventional cancer treatment. Low intensity laser irradiation (LILI), induce a biostimulatory response in several tissue types in addition to a dose-response effect to the detriment of cellular degeneration. Potential of LILI to induce CSC differentiation and subsequent cytotoxic therapy to prevent tumour regeneration is explored in this mini-review.  相似文献   

4.
Quiescence has been observed in stem cells (SCs), including adult SCs and cancer SCs (CSCs). Conventional chemotherapies mostly target proliferating cancer cells, while the quiescent state favors CSCs escape to chemotherapeutic drugs, leaving risks for tumor recurrence or metastasis. The tumor microenvironment (TME) provides various signals that maintain resident quiescent CSCs, protect them from immune surveillance, and facilitates their recurrence potential. Since the TME has the potential to support and initiate stem cell-like programs in cancer cells, targeting the TME components may prove to be a powerful modality for the treatment of chemotherapy resistance. In addition, an increasing number of studies have discovered that CSCs exhibit the potential of metabolic flexibility when metabolic substrates are limited, and display increased robustness in response to stress. Accompanied by chemotherapy that targets proliferative cancer cells, treatments that modulate CSC quiescence through the regulation of metabolic pathways also show promise. In this review, we focus on the roles of metabolic flexibility and the TME on CSCs quiescence and further discuss potential treatments of targeting CSCs and the TME to limit chemotherapy resistance.Subject terms: Cancer metabolism, Cancer microenvironment, Cancer stem cells  相似文献   

5.
Common origins of blood and blood vessels in adults?   总被引:5,自引:0,他引:5  
After embryonic development, the vast majority of cells are differentiated and all organs are in place. Growth of the organism then ensues and continues until adulthood, whereupon cell division largely ceases. In some tissues, notably the bone marrow, skin, and gut, cell proliferation continues throughout life to replace cells lost by attrition. This regeneration is fueled by rare, long-lived, and largely quiescent stem cells that give rise to committed progenitors, which in turn generate large numbers of fully differentiated cells. Mounting evidence suggests that such cells can significantly contribute to tissue repair and regeneration in adults and may therefore prove beneficial for autologous cell and gene therapies. This review focuses on the potential of adult stem cells to give rise to hematopoietic and vascular cells. We discuss evidence that a highly purified population of adult stem cells, termed SP cells, serves as a hematopoietic progenitor and can contribute to vascular regeneration after injury. We also discuss the potential relationship of these cells to the embryonic hemangioblast.  相似文献   

6.
As per the latest Globocan statistics, the high prevalence rate of breast cancer in low- and middle-income countries has led to it becoming the most common cancer to be diagnosed, hence posing a major public health challenge. As per this data, more than 11.7% of the estimated new cancer cases in 2020 were due to breast cancer. A small but significant subpopulation of cells with self- renewing ability are present in the tumor stroma and have been given the nomenclature of cancer stem cells (CSCs). These cells display a high degree of plasticity owing to their ability to transition from the slowly cycling quiescent phase to the actively proliferating phenotype. This attribute of CSCs allows them to differentiate into various cell types having diverse functions. Breast CSCs have a pivotal role in development, metastasis, treatment resistance and relapse of breast cancers. This review focuses on the pathways regulating breast CSC maintenance and the current strategies that are being explored for directing the development of novel, targeted, therapeutic approaches for limiting and eradicating this aberrant stem cell population.  相似文献   

7.
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.  相似文献   

8.
Recent experimental evidence indicates that many solid cancers have a hierarchical organization structure with a subpopulation of cancer stem cells (CSCs). The ability to identify CSCs prospectively now allows for testing the responses of CSCs to treatment modalities like radiation therapy. Initial studies have found CSCs in glioma and breast cancer relatively resistant to ionizing radiation and possible mechanisms behind this resistance have been explored. This review summarizes the landmark publications in this young field with an emphasis on the radiation responses of CSCs. The existence of CSCs in solid cancers place restrictions on the interpretation of many radiobiological observations, while explaining others. The fact that these cells may be a relatively quiescent subpopulation that are metabolically distinct from the other cells in the tumor has implications for both imaging and therapy of cancer. This is particularly true for biological targeting of cancer for enhanced radiotherapeutic benefit, which must consider whether the unique properties of this subpopulation allow it to avoid such therapies. J. Cell. Biochem. 108: 339–342, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Stem cells are undifferentiated cells that renew themselves while simultaneously producing differentiated tissue- or organspecific cells through asymmetric cell division. The appreciation of the importance of stem cells in normal tissue biology has prompted the idea that cancers may also develop from a progenitor pool (the "cancer stem cell (CSC) hypothesis"), and this idea is gaining increasing acceptance among scientists. CSCs are sub-populations of cancer cells responsible for tumor initiation, differentiation, recurrence, metastasis, and drug resistance. First identified in the hematopoietic system, CSCs have also been discovered in solid tumors of the breast, colon, pancreas, and brain. Recently, the tissue-specific stem cells of the normal urothelium have been proposed to reside in the basal layer, and investigators have isolated phenotypically similar populations of cells from urothelial cancer cell lines and primary tumors. Herein, we review the CSC hypothesis and apply it to explain the development of the two different types of bladder cancer: noninvasive ("superficial") carcinoma and invasive carcinoma. We also examine potential approaches to identify CSCs in bladder cancer as well as therapeutic applications of these findings. While exciting, the verification of the existence of CSCs in bladder cancer raises several new questions. Herein, we identify and answer some of these questions to help readers better understand bladder cancer development and identify reasonable therapeutic strategy for targeting stem cells.  相似文献   

10.
胃癌是仅次于肺癌的第二大致死率癌症,尽管近年来对胃癌研究有了很大进展,但由于缺乏良好的动物模型,对胃癌的发病机理仍然不是很清楚.近年的研究表明,肿瘤组织不是由均一细胞构成的,其中存在一些少量细胞可以自我更新并可以分化为肿瘤组织的其他细胞,这类细胞具有类似成体组织干细胞(tissue stem cells)的特性称之为肿瘤干细胞(cancer stem cells).肿瘤干细胞被认为在肿瘤的生长、转移、复发中发挥着重要作用.有证据表明在胃癌组织中存在胃癌干细胞(gastric cancer stem cells),但是对胃癌干细胞的来源仍然不是十分明确.对肿瘤干细胞的研究有助于癌症的治疗,改变目前药物针对所有癌细胞的治疗策略.  相似文献   

11.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

12.
From the point of view of regenerative potential, the most important cells are pluripotent stem cells (PSCs). Such cells must fulfill certain in vitro as well as in vivo criteria that have been established by work with PSCs isolated from embryos, which are known as embryonic stem cells (ESCs). According to these criteria, pluripotent stem cells should: (i) give rise to cells from all three germ layers, (ii) complete blastocyst development, and (iii) form teratomas after inoculation into experimental animals. Unfortunately, in contrast to immortalized embryonic ESC lines or induced PSCs (iPSCs), these last two criteria have thus far not been obtained in a reproducible manner for any potential PSC candidates isolated from adult tissues. There are two possible explanations for this failure. The first is that PSCs isolated from adult tissues are not fully pluripotent; the second is that there are some physiological mechanisms involved in keeping these cells quiescent in adult tissues that preclude their "unleashed proliferation", thereby avoiding the risk of teratoma formation. In this review we present an evidence that adult tissues contain remnants from development; a population of PSCs that is deposited in various organs as a backup for primitive stem cells, plays a role in rejuvenation of the pool of more differentiated tissue-committed stem cells (TCSCs), and is involved in organ regeneration. These cells share several markers with epiblast/germ line cells and have been named very small embryonic-like stem cells (VSELs). We suggest that, on one hand, VSELs maintain mammalian life span but, on the other hand, they may give rise to several malignancies if they mutate. We provide an evidence that the quiescent state of these cells in adult tissues, which prevents teratoma formation, is the result of epigenetic changes in some of the imprinted genes.  相似文献   

13.
Cancer stem cells in solid tumors   总被引:12,自引:0,他引:12  
Cancer stem cells (CSCs) are cells that drive tumorigenesis, as well as giving rise to a large population of differentiated progeny that make up the bulk of the tumor, but that lack tumorigenic potential. CSCs have been identified in a variety of human tumors, as assayed by their ability to initiate tumor growth in immunocompromised mice. Further characterization studies have demonstrated that gene expression profiles in breast cancer correlate with patient prognosis, and brain CSCs are specifically resistant to radiation through DNA damage repair. In addition, specific signaling pathways play a functional role in CSC self renewal and/or differentiation, and early studies indicate that CSCs are associated with a microenvironmental niche. Thus the biological properties of CSCs are just beginning to be revealed, and the continuation of these studies should lead to the development of CSC-targeted therapies for cancer treatment.  相似文献   

14.
Dean G Tang 《Cell research》2012,22(3):457-472
Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo. It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells. Somatic stem cells in adult organs are also heterogeneous, containing many subpopulations of self-renewing cells with distinct regenerative capacity. The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches. Like normal stem cells, recent data suggest that cancer stem cells (CSCs) similarly display significant phenotypic and functional heterogeneity, and that the CSC progeny can manifest diverse plasticity. Here, I discuss CSC heterogeneity and plasticity in the context of tumor development and progression, and by comparing with normal stem cell development. Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted. By understanding the interrelationship between CSCs and their differentiated progeny, we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.  相似文献   

15.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells(CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis intumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

16.
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histonemodifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).  相似文献   

17.
18.
The existence of cancer stem cells (CSCs) or stem-like cancer cells (SLCCs) is regarded as the cause of tumor formation and recurrence. However, the origin of such cells remains controversial with two competing hypotheses: CSCs are either transformed from tissue adult stem cells or dedifferentiated from transformed progenitor cells. Compelling evidence has determined the chromosomal aneuploidy to be one of the hallmarks of cancer cells, indicating genome instability plays an important role in tumorigenesis, for which CSCs are believed to be the initiator. To gain direct evidence that genomic instability is involved in the induction of SLCCs, we utilized multiple approaches to enhance genomic instability and monitored the percentage of SLCC in cultured cancer cells. Using side population (SP) cells as a marker for SLCC in human nasopharyngeal carcinoma (NPC) and CD133 for human neuroblastoma cells, we found that DNA damage inducers, UV and mitomycin C were capable of increasing SP cells in NPC CNE-2 and neuroblastoma SKN-SH cells. Likewise, either overexpression of a key regulator of cell cycle, Mad2, or knock down of Aurora B, an important kinase in mitosis, or Cdh1, a key E3 ligase in cell cycle, resulted in a significant increase of SP cells in CNE-2. More interestingly, enrichment of SP cells was observed in recurrent tumor tissues as compared with the primary tumor in the same NPC patients. Our study thus suggested that, beside transformation of tissue stem cells leading to CSC generation, genomic instability could be another potential mechanism resulting in SLCC formation, especially at tumor recurrence stage.  相似文献   

19.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

20.
Stem cell: balancing aging and cancer   总被引:5,自引:0,他引:5  
Stem cells are defined by their self-renewing capacity and the ability to differentiate into one or more cell types. Stem cells can be divided, depending on their origin, into embryonic or adult. Embryonic stem cells derive from early stage embryos and can give rise to cells from all three germ layers. Adult stem cells, first identified in hematopoietic tissue, reside in a variety of adult tissues. Under normal physiologic conditions, adult stem cells are capable of differentiating into the limited cell types that comprise the particular tissue or organ. Adult stem cells are responsible for tissue renewal and exhaustion of their replicative capacity may contribute to tissue aging. Loss of unlimited proliferative capacity in some of the adult stem cells and/or their progenitors may have involved the evolutionary trade-off: senescence prevents cancer but may promote aging. Embryonic stem cells exhibit unlimited self-renewal capacity due to the expression of telomerase. Although they possess some cancer cell characteristics, embryonic stem cells exhibit a remarkable resistance to genomic instability and malignant transformation. Understanding the tumor suppressive mechanisms employed by embryonic stem cells may contribute to the development of novel cancer treatments and safe cell-based therapies for age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号