首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic cancer poorly responds to available drugs, and finding novel approaches to target this cancer type is of high significance. Here, based on a common property of pancreatic cancer cells to express somatostatin receptors (SSTR), we designed drug conjugates with novel somatostatin-derived cyclic peptides (SSTp) with broad selectivity towards SSTR types to facilitate drug targeting of the pancreatic cancer cells specifically. Uptake of our newly designed SSTps was facilitated by SSTRs expressed in the pancreatic cancers, including SSTR2, SSTR3, SSTR4 and SSTR5. Three major drugs were conjugated to our best SSTps that served as delivery vehicles, including Camptothecin (CPT), Combretastatin-4A (COMB) and Azatoxin (AZA). All designed drug conjugates demonstrated penetration to pancreatic cancer cell lines, and significant toxicity towards them. Furthermore, the drug conjugates specifically accumulated in tumors in the animal xenograft model, though some accumulation was also seen in kidney. Overall these findings lay the basis for development of novel drug series that could target the fatal pancreatic cancer.  相似文献   

2.
Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation. This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions.  相似文献   

3.
Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic-free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an antimicrobial enzyme, lysozyme. Hen egg lysozyme was covalently attached to two types of polystyrene latex nanoparticles: positively charged, containing aliphatic amine surface groups, and negatively charged, containing sulfate and chloromethyl surface groups. In the case of bacterial lysis assay with a Gram-positive bacteria Micrococcus lysodeikticus, activity of lysozyme conjugated to positively charged nanoparticles was approximately twice as large as that of free lysozyme, while lysozyme conjugated to negatively charged nanoparticles showed little detectable activity. At the same time, when assayed using a low-molecular weight oligosaccharide substrate, lysozyme attached to both positively and negatively charged nanoparticles showed slightly lower activity than free enzyme. A possible explanation of these results is that lysozyme attached to negatively charged nanoparticles cannot be effectively targeted to the bacteria because of the electrostatic Coulombic repulsion from the negatively charged bacterial cell walls, whereas lysozyme conjugated to positively charged nanoparticles was targeted better than free enzyme due to stronger electrostatic attraction to bacteria. Zeta potential measurements confirmed the validity of this hypothesis. Thus, nanoparticle charge is an important factor that can be used to control targeting and activity of protein-nanoparticle conjugates.  相似文献   

4.
Recent studies have established that in mammalian cells insulin-like growth factor-II can couple the large mannose-6-phosphate receptor to a GTP-binding protein and that the insulin-like growth factor-II-induced activation of the GTP-binding protein is inhibited by mannose-6-phosphate and lysosomal enzymes. In mouse, the gene for the large mannose-6-phosphate receptor is maternally imprinted.  相似文献   

5.
Triplex-forming oligonucleotides (TFOs) are DNA-binding molecules, which offer the potential to selectively modulate gene expression. However, the biological activity of TFOs as potential antigene compounds has been limited by cellular uptake. Here, we investigate the effect of cell-penetrating peptides on the biological activity of TFOs as measured in an assay for gene-targeted mutagenesis. Using the transport peptide derived from the third helix of the homeodomain of antennapedia (Antp), we tested TFO–peptide conjugates compared with unmodified TFOs. TFOs covalently linked to Antp resulted in a 20-fold increase in mutation frequency when compared with ‘naked’ oligonucleotides. There was no increase above background in mutation frequency when Antp by itself was added to the cells or when Antp was linked to mixed or scrambled sequence control oligonucleotides. In addition, the TFO–peptide conjugates increased the mutation frequency of the target gene, and not the control gene, in a dose-responsive manner. Confocal microscopy using labeled oligonucleotides indicated increased cellular uptake of TFOs when linked to Antp, consistent with the gene-targeting data. These results suggest that peptide conjugation may enhance intranuclear delivery of reagents designed to bind to chromosomal DNA.  相似文献   

6.
Although the Man-6-P-independent lysosomal sorting of prosaposin, a precursor of four saposins (A, B, C, and D) is not understood, a protein/lipid interaction is considered. Immunocytochemical analysis revealed that each single saposin linked to the C-terminus of prosaposin and to secretory albumin, drives the chimeric protein to lysosomes in COS-7 cells. Quantitative image analysis demonstrated that saposins are targeted with different efficiency (P<0.05) and in a less smooth manner than the precursor. Despite a very close homology, the charge distribution at the surface of 3D comparative models between saposins appeared different. Western blotting monitored prosaposin in cells also as a di- or trimeric form, whereas the chimeric saposins as monomeric. This implies that each amphipathic saposin-like motif may be a part of the overall structural requirements for binding of the precursor to the membrane lipids of transport vesicle. The crystal structure of saposin B demonstrating two dimeric units for lipid binding supports current findings.  相似文献   

7.
In this study, we describe the synthesis and characterization of a conjugate consisting of poly(ethylene glycol 2,000 Da)(10)-graft-poly(ethylene imine 25 kDa) (PEG-PEI) covalently coupled to Trastuzumab (Herceptin) via N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) for specific gene delivery to Her2-expressing cell lines. The efficiency of DNA condensation was studied using an ethidium bromide exclusion assay and demonstrated negligible differences compared to PEG-PEI. Conjugate complex sizes were determined by dynamic light scattering to be in the range 130-180 nm. zeta potentials at different N/P ratios were close to neutral. Flow cytometry and confocal microscopy revealed efficient binding and uptake of Trastuzumab-PEI-PEG complexes using Her2-positive SK-BR-3 cells. In contrast, binding and uptake into Her2-negative OVCAR-3 cells was negligible. In good correlation with these findings, reporter gene expression using targeted complexes in SK-BR-3 cells was up to sevenfold higher than that of unmodified PEG-PEI complexes. With the use OVCAR-3 cells, no significant difference in expression efficiencies could be observed between conjugate and PEG-PEI complexes. Inhibition experiments with free Trastuzumab showed a significant decrease in reporter gene expression using SK-BR-3 cells but no decrease using OVCAR-3 cells, strongly supporting a specific Her2-receptor-mediated uptake mechanism. Our results suggest that Trastuzumab-PEI-PEG might be a promising new bioconjugate for targeted gene transfer to Her2-positive tumor cells in vivo.  相似文献   

8.
Mannose 6-phosphate receptors and lysosomal enzyme targeting   总被引:32,自引:0,他引:32  
  相似文献   

9.
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.  相似文献   

10.
The use of dendritic cells (DC) for the development of therapeutic cancer vaccines is attractive because of their unique ability to present tumor epitopes via the MHC class I pathway to induce cytotoxic CD8+ T lymphocyte responses. C-Type membrane lectins, DC-SIGN and the mannose receptor (MR), present on the DC surface, recognize oligosaccharides containing mannose and/or fucose and mediate sugar-specific endocytosis of synthetic oligolysine-based glycoclusters. We therefore asked whether a glycotargeting approach could be used to induce uptake and presentation of tumor antigens by DC. To this end, we designed and synthesized glycocluster conjugates containing a CD8+ epitope of the Melan-A/Mart-1 melanoma antigen. These glycocluster-Melan-A conjugates were obtained by coupling glycosynthons: oligosaccharyl-pyroglutamyl-beta-alanine derivatives containing either disaccharides, a dimannoside (Manalpha-6Man) or lactoside, or a Lewis oligosaccharide, to Melan-A 16-40 peptide comprising the 26-35 HLA-A2 restricted T cell epitope, extended with an oligolysine stretch at the C-terminal end. We showed by confocal microscopy and flow cytometry that fluorescent-labeled Melan-A glycoclusters containing either dimannoside or Lewis oligosaccharide were taken up by DC and concentrated in acidic vesicles; conversely lactoside glycopeptides were not at all taken up. Furthermore, using surface plasmon resonance, we showed that dimannoside and Lewis-Melan-A conjugates bind MR and DC-SIGN with high affinity. DC loaded with these conjugates, but not with the lactose-Melan-A conjugate, led to an efficient presentation of the Melan-A epitope eliciting a CD8+ T-lymphocyte response. These data suggest that synthetically designed glycocluster-tumor antigen conjugates may induce antigen cross-presentation by DC and represent a promising tool for the development of tumor vaccines.  相似文献   

11.
《MABS-AUSTIN》2013,5(1):42-52
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.  相似文献   

12.
Several recent technology-driven advances in the area of NMR have rekindled an interest in the application of the technology to problems in drug discovery and development. A unique aspect of NMR is that it has applicability in broadly different areas of the drug discovery and optimization processes. NMR techniques for screening aimed at the discovery of novel ligands or low molecular weight structures for fragment-based build up procedures are being applied commonly in the industry. Application of NMR in structure-guided drug design and metabonomics are also becoming routine. We present an overview of some of the most recent NMR developments in these areas.  相似文献   

13.
14.
Screening of a 65,536-member one-bead-one-compound (OBOC) combinatorial library of glycopeptide dendrimers of structure ((βGal)n + 1X8X7X6X5)2DapX4X3X2X1(β-Gal)m (βGal = β-galactosyl-thiopropionic acid, X8–1 = variable amino acids, Dap = l-2,3-diaminopropionic acid, n, m = 0, or 1 if X8 = Lys resp. X1 = Lys) for binding of Jurkat cells to the library beads in cell culture, resynthesis and testing lead to the identification of dendrimer J1 (βGal-Gly-Arg-His-Ala)2Dap-Thr-Arg-His-Asp-CysNH2 and related analogues as delivery vehicles. Cell targeting is evidenced by FACS with fluorescein conjugates such as J1F. The colchicine conjugate J1C is cytotoxic with LD50 = 1.5 μM. The β-galactoside groups are necessary for activity, as evidenced by the absence of cell-binding and cytotoxicity in the non-galactosylated, acetylated analogue AcJ1F and AcJ1C, respectively. The pentagalactosylated dendrimer J4 βGal4(Lys-Arg-His-Leu)2Dap-Thr-Tyr-His-Lys(βGal)-Cys) selectively labels Jurkat cell as the fluorescein derivative J4F, but its colchicine conjugate J4C lacks cytotoxicity. Tubulin binding assays show that the colchicine dendrimer conjugates do not bind to tubulin, implying intracellular degradation of the dendrimers releasing the active drug.
  相似文献   

15.
The synthesis and chemotactic properties of a new class of branched oligopeptide-based conjugates are described. Tetratuftsin derivatives containing chemotactic formyl tripeptides (For-MLF, For-NleLF or For-MMM) in branches were prepared by stepwise solid-phase peptide synthesis. The influence of the composition and ionic charge of the carrier-branched oligopeptide on the chemotactic behaviour of the conjugate was studied in Tetrahymena pyriformis. Conjugates with methotrexate (Mtx) as a drug component was also prepared. For this, a GFLGC spacer, cleavable by cathepsin B, was used. The spacer with N-terminal methotrexate was coupled to the chloroacetylated chemotactic carrier molecule by thioether bond formation. The chemotactic activity and cytotoxity of Mtx conjugates were also studied.  相似文献   

16.
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the biosynthesis of mannose-6-P residues. Previously, we generated a lysosomal enzyme recognition domain by substituting two regions (lysine 203 and amino acids 265-292) of the lysosomal hydrolase cathepsin D into a related secretory protein glycopepsinogen. When expressed in Xenopus oocytes, the oligosaccharides of the chimeric protein were efficiently phosphorylated (Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Cell 63, 281-291). In the current study, incremental substitutions of cathepsin D residues into glycopepsinogen and alanine-scanning mutagenesis were utilized to define the recognition domain more precisely. A computer-generated model of the cathepsin D/pepsinogen chimeric molecule served as a guide for mutagenesis and for the interpretation of results. These studies indicate that the recognition domain is a surface patch that contains multiple interacting sites. There is a strict positional requirement for the lysine residue at position 203.  相似文献   

17.
Inhibition of gene expression by antisense oligonucleotides is limited by their low ability to enter cells. Knowing that sugar binding receptors, also called membrane lectins, efficiently internalize neoglycoproteins bearing the relevant sugar, 6-phosphomannose, for instance, oligonucleotides--substituted on their 5'-end with either a fluorescent probe or a radioactive label on the one hand, and bearing a thiol function on their 3'-end, on the other hand,--were coupled onto 6-phosphomannosylated proteins via a disulfide bridge. The oligonucleotide bound to 6-phosphomannosylated serum albumin is much more efficiently internalized roughly 20 times than the free oligonucleotide. Although most of the oligonucleotides are associated with vesicular compartments, oligonucleotides after releasing from the carrier by reduction of the disulfide bridge may find their way to reach the cytosol and then lead to an increase in the efficiency of the oligonucleotides.  相似文献   

18.
A new approach for isolating and recovering biological macromolecules using membrane-encapsulated soluble ligand conjugates was investigated. Membrane-encapsulated solid adsorbents have been successfully developed and employed in our laboratory to isolate and purify proteins and enzymes directly from culture broths. This new concept also makes it possible to use soluble ligand conjugates instead of solid adsorbents inside membrane capsules. In this work, model membrane-encapsulated soluble and insoluble ligands comprising Blue Dextran and Blue Sepharose entrapped within calcium alginate membranes were studied to compare adsorption characteristics such as capacities and rates. Experimental results suggest that membrane-encapsulated soluble ligands may be expected to result in higher overall adsorption capacity compared to membrane-encapsulated solid adsorbents with comparable adsorption rates.  相似文献   

19.
The B-cell lymphoma/leukemia-2 (bcl-2) proto-oncogene has been associated with the transformation of benign lesions to malignancy, disease progression, poor prognosis, reduced survival, and development of resistance to radiation and chemotherapy in many types of cancer. The objective of this work was to synthesize an antisense peptide nucleic acid (PNA) complementary to the first six codons of the bcl-2 open reading frame, conjugated to a membrane-permeating peptide for intracellular delivery, and modified with a bifunctional chelating agent for targeting imaging and therapeutic radiometals to tumors overexpressing bcl-2. Four peptide-PNA constructs were synthesized by a combination of manual and automated stepwise elongation techniques, including bcl-2 antisense conjugates and nonsense conjugates with no complementarity to any known mammalian gene or DNA sequence. The PNA sequences were synthesized manually by solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) techniques. Then a fully protected lysine monomer, modified with 1,4,7,10-tetraazacyclododecane-N,N',N',N'"-tetraacetic acid (DOTA) for radiometal chelation, was coupled manually to each PNA sequence. Synthesis of the DOTA-PNA conjugates was followed by automated elongation with a peptide sequence (PTD-4-glycine, PTD-4-G), known to mediate cellular internalization of impermeable effector molecules, or its retro-inverso analogue (ri-PTD-4-G). Preparation of the four conjugates required an innovative synthetic strategy, using mild acid conditions to generate hydrophobic, partially deprotected intermediates. These intermediates were purified by semipreparative reversed-phase HPLC and completely deprotected to yield pure peptide-PNA conjugates in 6% to 9% overall yield. Using modifications of this synthetic strategy, the ri-PTD-4-G conjugate of bcl-2 antisense PNA was prepared using a lysine derivative of tetramethylrhodamine (TMR) for fluorescence microscopy. Plasma stability studies showed that (111)In-DOTA-labeled ri-PTD-4-G-anti-bcl-2 PNA was stable for 168 h at 37 degrees C, unlike the conjugate containing the parent peptide sequence. Scanning confocal fluorescence microscopy of TMR-labeled ri-PTD-4-G-anti-bcl-2 PNA in Raji lymphoma cells demonstrated that the retro-inverso peptide was active in membrane permeation and mediated cellular internalization of the antisense PNA into the cytoplasm, where high concentrations of bcl-2 mRNA are expected to be present.  相似文献   

20.
Aryl-guanidino polyamine conjugates were prepared to evaluate their recognition for polyamine transporter (PAT) via a-difluoromethylornithine (DFMO) and spermidine (SPD)-treated B16 cell lines. The potent synergistic effects of DFMO on guanidino polyamine conjugates indicated that the presence of DFMO strongly facilitates the transport of conjugates into cells via PAT on cell membrane. The apoptotic mechanisms of triamine conjugates 10 and 1 (with and without guanidine groups) revealed that they induced apoptosis of Hela cells through the mitochondrial pathway associated with lysosomes, while DFMO strongly synergizes the function of 10 without changing the apoptotic route. Taken together, guanidino polyamine conjugates can target PAT for transport as normal polyamine ones, and the presence of guanidine in the polyamine vectors does not seem to alter the cellular targets of the conjugates, which may depend mainly on the pharmacophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号