首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inability to transduce cellular membranes is a limitation of current magnetic resonance imaging probes used in biologic and clinical settings. This constraint confines contrast agents to extracellular and vascular regions of the body, drastically reducing their viability for investigating processes and cycles in developmental biology. Conversely, a contrast agent with the ability to permeate cell membranes could be used in visualizing cell patterning, cell fate mapping, gene therapy, and, eventually, noninvasive cancer diagnosis. Therefore, we describe the synthesis and quantitative imaging of four contrast agents with the capability to cross cell membranes in sufficient quantity for detection. Each agent is based on the conjugation of a Gd(III) chelator with a cellular transduction moiety. Specifically, we coupled Gd(III)-diethylenetriaminepentaacetic acid DTPA and Gd(III)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with an 8-amino acid polyarginine oligomer and an amphipathic stilbene molecule, 4-amino-4'-(N,N-dimethylamino)stilbene. The imaging modality that provided the best sensitivity and spatial resolution for direct detection of the contrast agents is synchrotron radiation x-ray fluorescence (SR-XRF). Unlike optical microscopy, SR-XRF provides two-dimensional images with resolution 10(3) better than (153)Gd gamma counting, without altering the agent by organic fluorophore conjugation. The transduction efficiency of the intracellular agents was evaluated by T(1) analysis and inductively coupled plasma mass spectrometry to determine the efficacy of each chelate-transporter combination.  相似文献   

2.
3.
Mixing is a unit operation that combines two or more components into a homogeneous mixture. This work involves mixing two viscous liquid streams using an in-line static mixer. The mixer is a split-and-recombine design that employs shear and extensional flow to increase the interfacial contact between the components. A prototype split-and-recombine (SAR) mixer was constructed by aligning a series of thin laser-cut Poly (methyl methacrylate) (PMMA) plates held in place in a PVC pipe. Mixing in this device is illustrated in the photograph in Fig. 1. Red dye was added to a portion of the test fluid and used as the minor component being mixed into the major (undyed) component. At the inlet of the mixer, the injected layer of tracer fluid is split into two layers as it flows through the mixing section. On each subsequent mixing section, the number of horizontal layers is duplicated. Ultimately, the single stream of dye is uniformly dispersed throughout the cross section of the device. Using a non-Newtonian test fluid of 0.2% Carbopol and a doped tracer fluid of similar composition, mixing in the unit is visualized using magnetic resonance imaging (MRI). MRI is a very powerful experimental probe of molecular chemical and physical environment as well as sample structure on the length scales from microns to centimeters. This sensitivity has resulted in broad application of these techniques to characterize physical, chemical and/or biological properties of materials ranging from humans to foods to porous media (1, 2). The equipment and conditions used here are suitable for imaging liquids containing substantial amounts of NMR mobile (1)H such as ordinary water and organic liquids including oils. Traditionally MRI has utilized super conducting magnets which are not suitable for industrial environments and not portable within a laboratory (Fig. 2). Recent advances in magnet technology have permitted the construction of large volume industrially compatible magnets suitable for imaging process flows. Here, MRI provides spatially resolved component concentrations at different axial locations during the mixing process. This work documents real-time mixing of highly viscous fluids via distributive mixing with an application to personal care products.  相似文献   

4.
High-throughput mouse magnetic resonance imaging (MRI) is seeing rapidly increasing demand in development of therapeutics. Recent advances including higher-field systems, new gradient and radio frequency coils and new pulse sequences, coupled with efficient animal preparation and data handling, allow high-throughput MRI under certain protocols. However, with current shifts from anatomic to functional and molecular imaging, innovative technology is required to meet new throughput demands. The first multiple mouse imaging strategies have provided a glimpse of the future state-of-the-art. However, the successful translation of standard clinical MRI technology to preclinical MRI is required to facilitate next-generation high-throughput MRI.  相似文献   

5.
Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR) constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR) in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality - by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae - and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.  相似文献   

6.
We have witnessed the advancements of MRI-Fricke-infused gel dosimetry since its commencing in 1984. Over the years, many efforts have been spent to improve the method's efficacy, i.e., to improve its dose-response sensitivity, reproducibility and measurement accuracy. In this article, we give a review of the development of this relatively new dosimetric method. An example of applying this method to gamma knife stereotactic radiosurgery dose distribution mapping is also given.  相似文献   

7.
MRI is an optimal clinical (research) tool to provide information on brain morphology and pathology and to detect metal ions that possess intrinsic magnetic properties. Non-heme iron is abundantly present in the brain in three different forms: "low molecular weight" complexes, iron bound to "medium molecular weight complexes" metalloproteins such as transferrin, and "high molecular weight" complexes as ferritin and hemosiderin. The total amount and form of iron may differ in health and disease, and MRI can possibly quantify and monitor such changes. Ferritin-bound iron is the main storage form of iron and is present predominantly in the extrapyramidal nuclei where its amounts normally increase as a function of age. Ferritin is water soluble and shortens both, T1 and T2 relaxation, with as result a signal change on the MR images. Hemosiderin, a degradation product of ferritin, is water-insoluble with a stronger T2 shortening effect than ferritin. The larger cluster size of hemosiderin and its water-insolubility also explain a lack of significant T1-shortening effect on T1-weighted images. Using both in vitro specimens and intact brain tissue in vivo we demonstrate here that MRI may be able to distinguish between ferritin- and hemosiderin-bound iron.  相似文献   

8.
Identification of high-risk atherosclerotic lesions prone to rupture and thrombosis may greatly decrease the morbidity and mortality associated with atherosclerosis. High-resolution magnetic resonance imaging (MRI) has recently emerged as one of the most promising techniques for the non-invasive study of atherothrombotic disease, as it can characterize plaque composition and monitor its progression. The development of MRI contrast agents that specifically target components of the atherosclerotic plaque may enable non-invasive detection of high-risk lesions. This review discusses the use of high-resolution MRI for plaque detection and characterization and the potentials of "Molecular Imaging" using a variety of molecules present in atherosclerotic plaques that may serve as targets for specific contrast agents to allow the identification of high-risk atherosclerotic lesions in-vivo. Ultimately, such agents may enable treatment of "high-risk" patients prior to lesion progression and occurrence of complications.  相似文献   

9.
10.
Velocity profiles in stenosed tube models using magnetic resonance imaging   总被引:1,自引:0,他引:1  
A time-of-flight MRI velocity measurement technique is evaluated against corresponding LDV measurements in a constriction tube model over a range of physiologic flow conditions. Results from this study show that MR displacement images can: 1) be obtained within both laminar and turbulent jets (maximum stenotic Re approximately equal to 4,200), 2) measure mean jet velocities up to 172 cm/s, and, 3) detect low forward and reverse stenosis (0 less than or equal to L/D less than or equal to 2). Regions between the jet termination point and re-establishment of laminar flow (Re greater than or equal to 1500, greater than or equal to 1000, and greater than or equal to 110 downstream of 40, 60, and 80 percent stenosis, respectively) cannot presently be detected by this technique.  相似文献   

11.
A bolus-tracking magnetic resonance imaging (MRI) method has been employed to measure velocity profiles for oscillatory flow with and without a steady flow component as well as pulsatile flow in an axisymmetric tube model. A range of flow conditions within normal physiological limits was tested. The imaged velocity profiles were observed to be generally in accord with theoretical predictions. Instantaneous flow rates calculated from the MR images agreed well with those assessed using an ultrasonic flowmeter. Because MRI is noninvasive and poses few risks to subjects, this technique is potentially useful for studying vascular hemodynamics in vivo.  相似文献   

12.

Introduction

Few data are available concerning structural changes at the hip observed by magnetic resonance imaging (MRI) in people with or without hip osteoarthritis (OA). The aim of this study was to compare cartilage volume and the presence of cartilage defects and bone marrow lesions (BMLs) in participants with and without diagnosed hip OA.

Methods

Femoral head cartilage volume was measured by MRI for 141 community-based persons with no diagnosed hip OA, and 19 with diagnosed hip OA. Cartilage defects and BMLs were regionally scored at the femoral head and acetabulum.

Results

Compared with those without diagnosed hip OA, people with diagnosed hip OA had less femoral head cartilage volume (1763 mm3 versus 3343 mm3; p <0.001) and more prevalent cartilage defects and BMLs (all p ≤0.05) at all sites other than the central inferomedial region of the femoral head. In those with no diagnosed hip OA, cartilage defects in the anterior and central superolateral region of the femoral head were associated with reduced femoral head cartilage volume (all p ≤0.02). Central superolateral BMLs at all sites were associated with reduced femoral head cartilage volume (all p ≤0.003), with a similar trend occurring when BMLs were located in the anterior region of the hip (all p ≤0.08).

Conclusions

Compared with community-based adults with no diagnosed hip OA, people with diagnosed hip OA have less femoral head cartilage volume and a higher prevalence of cartilage defects and BMLs. For people with no diagnosed hip OA, femoral head cartilage volume was reduced where cartilage defects and/or BMLs were present in the anterior and central superolateral regions of the hip joint. Cartilage defects and BMLs present in the anterior and central superolateral regions may represent early structural damage in the pathogenesis of hip OA.  相似文献   

13.
Adult male mice exposed to a Nuclear Magnetic Resonance Imaging (NMRI) procedure during the mid-dark period and injected with morphine (10 mg/kg) failed to exhibit the normal nocturnally enhanced morphine analgesia response to a thermal stimulus that was displayed by mice exposed to a sham imaging procedure and treated with morphine (p less than .01). When tested during the mid-light period, animals exposed to the NMRI procedure and given morphine displayed attenuated analgesia levels relative to sham exposed mice (p less than .01) treated with morphine. However, the morphine induced analgesia was not totally abolished since the imaged mice still exhibited analgesia relative to saline treated mice (p less than .01). These results suggest that the magnetic and/or radio-frequency fields associated with the NMRI procedure alter both day- and night-time responses to morphine. These results may reflect magnetic field induced alterations in neuronal calcium binding and/or alterations in nocturnal pineal gland activity.  相似文献   

14.
In this study we use neuroanatomic data from living anthropoid primate subjects to test the following three hypotheses: (1) that the human neocortex is significantly larger than expected for a primate of our brain size, (2) that the human prefrontal cortex is significantly more convoluted than expected for our brain size, and (3) that increases in cerebral white matter volume outpace increases in neocortical gray matter volume among anthropoid primates. Whole brain MRI scans were obtained from 44 living primate subjects from 11 different species. Image analysis software was used to calculate total brain volume, neocortical gray matter volume, cerebral white matter volume, and the cross sectional area of the spinal cord in each scan. Allometric regression analyses were used to compare the relative size of these brain structures across species, with an emphasis on determining whether human brain proportions correspond with predictions based on nonhuman primate allometric trajectories. All three hypotheses were supported by our analysis. The results of this study provide additional insights into human brain evolution beyond the important observation that brain volume approximately tripled in the hominid lineage by demonstrating that the neocortex was uniquely modified throughout hominid evolution. These modifications may constitute part of the neurobiological substrate that supports some of our species most distinctive cognitive abilities.  相似文献   

15.
16.
Nonalcoholic fatty liver disease (NAFLD) is a common cause of hepatic dysfunction. The disease spectrum ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The aim of this study was to identify metabolic differences in murine models of simple hepatic steatosis and NASH for the distinction of these NAFLD stages. For 12 weeks, male BALB/c mice were fed either a control or two different high-fat diets leading to hepatic steatosis and NASH, respectively. Metabolic differences were determined by independent component analysis (ICA) of nuclear magnetic resonance (NMR) spectra of lipophilic and hydrophilic liver extracts, and urine specimens. The results from ICA clearly discriminated the three investigated groups. Discriminatory biomarkers in the lipophilic liver extracts were free cholesterol, cholesterol ester and lipid methylene. Discrimination of the hydrophilic liver extracts was mainly mediated by betaine, glucose, and lactate, whereas in urine taurine, trimethylamine-N-oxide, and trimethylamine were the most discriminatory biomarkers. In conclusion, NMR metabolite fingerprinting of spot urine specimens may allow the noninvasive distinction of steatosis and NASH.  相似文献   

17.
The spatiotemporal localization of neuronal signaling is important for triggering neuronal responses in specific locations at precise times. Fluorescence resonance energy transfer imaging enables measurement of spatiotemporal dynamics of signaling activity in live neurons. Although the usefulness of fluorescence resonance energy transfer is well recognized, there are many difficulties in applying it, particularly when imaging in neuronal micro-compartments in light-scattering brain tissue. Fluorescence resonance energy transfer has been imaged using several techniques including intensity-based methods, fluorescence lifetime imaging and fluorescence anisotropy imaging. These methods have different advantages and disadvantages, and thus are suitable in different applications.  相似文献   

18.
Athree-dimensional magnetic resonance imaging (MRI) method to measurepulmonary edema and lung microvascular barrier permeability wasdeveloped and compared with conventional methods in nine mongrel dogs.MRIs were obtained covering the entire lungs. Injury was induced byinjection of oleic acid (0.021-0.048 ml/kg) into a jugularcatheter. Imaging followed for 0.75-2 h. Extravascular lung waterand permeability-related parameters were measured from multiple-indicator dilution curves. Edema was measured as magnetic resonance signal-to-noise ratio (SNR). Postinjury wet-to-dry lung weight ratio was 5.30 ± 0.38 (n = 9). Extravascular lung water increased from 2.03 ± 1.11 to 3.00 ± 1.45 ml/g(n = 9, P < 0.01). Indicatordilution studies yielded parameters characterizing capillary exchangeof urea and butanediol: the product of the square root of equivalentdiffusivity of escape from the capillary and capillary surface area(D1/2S)and the capillary permeability-surface area product(PS). The ratio ofD1/2Sfor urea toD1/2Sfor butanediol increased from 0.583 ± 0.027 to 0.852 ± 0.154 (n = 9, P < 0.05). Whole lung SNR atbaseline, before injury, correlated withD1/2Sand PS ratios (both P < 0.02). By using rate of SNR change, the mismatch of transcapillaryfiltration flow and lymph clearance was estimated to be0.2-1.8 ml/min. The filtration coefficient was estimated fromthese values. Results indicate that pulmonary edema formation duringoleic acid injury can be imaged regionally and quantified globally, andthe results suggest possible regional quantification by usingthree-dimensional MRI.

  相似文献   

19.
We propose a novel iterative scheme for adaptive smoothing of functional MR images. The method estimates a signal model at every voxel in the time-series, which is subsequently used in determining the weights of the smoothing kernel. The method does not require any information about the test hypothesis and is well-suited as a preprocessing step for both hypothesis-driven and data-driven analysis techniques. We demonstrate the performance of the proposed method by applying it to preprocess both simulated and real fMRI data. The method is found to effectively suppress the noise while preserving the shapes of the active brain regions.  相似文献   

20.
We report a screening procedure to predict ligand coordination to EuII and EuIII using magnetic resonance imaging in which bright images indicate complexation and dark images indicate no complexation. Here, paramagnetic GdIII is used as a surrogate for EuIII in the screening procedure to enable detection with magnetic resonance imaging. The screening procedure was tested using a set of eight ligands with known coordination to EuII and EuIII, and results were found to be consistent with expected binding. Validation of the screening procedure with known coordination chemistry enables use with new ligands in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号