首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isocoumarins (1-50 microM) paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naptho(2,3c)pyran-1-one), 8,8'-paepalantine dimer, and vioxanthin isolated from Paepalanthus bromelioides, were assessed for antioxidant activity using isolated rat liver mitochondria and non-mitochondrial systems, and compared with the flavonoid quercetin. The paepalantine and paepalantine dimers, but not vioxanthin, were effective at scavenging both 1,1-diphenyl-2-picrylhydrazyl (DPPH(*)) and superoxide (O(2)(-)) radicals in non-mitochondrial systems, and protected mitochondria from tert-butylhydroperoxide-induced H(2)O(2) accumulation and Fe(2+)-citrate-mediated mitochondrial membrane lipid peroxidation, with almost the same potency as quercetin. These results point towards paepalantine, followed by paepalantine dimer, as being a powerful agent affording protection, apparently via O(2)(-) scavenging, from oxidative stress conditions imposed on mitochondria, the main intracellular source and target of those reactive oxygen species. This strong antioxidant action of paepalantine was reproduced in HepG2 cells exposed to oxidative stress condition induced by H(2)O(2).  相似文献   

2.
AimsThis study was performed to evaluate the therapeutic efficacy of nanocapsulated flavonoidal quercetin (QC) in combating arsenic-induced reactive oxygen species (ROS)-mediated oxidative damage in hepatocytes and brain cells in a rat model.Main methodsHepatic and neuronal cell damage in rats was made by a single injection (sc) of sodium arsenite (NaAsO2, 13 mg/kg b. wt. in 0.5 ml of physiological saline). A single dose of 500 µl of quercetin suspension (QC) (QC 8.98 µmol/kg) or 500 µl of nanocapsulated QC (NPQC) (QC 8.98 µmol/kg) was given orally to rats at 90 min prior to the arsenite injection.Key findingsInorganic arsenic depositions (182 ± 15.6 and 110 ± 12.8 ng/g protein) were found in hepatic and neuronal mitochondrial membranes. Antioxidant levels in hepatic and neuronal cells were reduced significantly by arsenic. NPQC prevented the arsenite-induced reduction in antioxidant levels in the liver and brain. Arsenic induced a substantial decrease in liver and brain cell membrane microviscosities, and NPQC treatment resulted in a unique protection against the loss. A significant correlation between mitochondrial arsenic and its conjugated diene level was observed both in liver and brain cells for all experimental rats.SignificanceArsenic-specific antidotes are used against arsenic-induced toxicity. However, the target site is poorly recognized and therefore achieving an active concentration of drug molecules can be a challenge. Thus, our objective was to formulate NPQC and to investigate its therapeutic potential in an oral route against arsenite-induced hepatic and neuronal cell damage in a rat model.  相似文献   

3.
The therapeutic efficacy of two thiol chelators, meso 2,3-dimercaptosuccinic acid (DMSA) or 2,3-dimercaptopropane sulfonate (DMPS) in treating chronic arsenic intoxication was investigated in male rats. Both the chelators were effective in promoting urinary arsenic excretion and restoring arsenic induced inhibition of blood -aminolevulinic acid dehydratase activity and hepatic glutathione level. Elevation of urinary -aminolevulinic acid excretion and arsenic concentration in blood, liver and kidneys were reduced significantly by both the chelators. Histopathological lesions induced by arsenic were also effectively reduced by the above chelators. DMSA being more effective than DMPS. The results suggest DMSA and DMPS to be effective antidotes for treating chronic arsenic toxicity in experimental animals.  相似文献   

4.
The present study deals with the therapeutic potential of combined administration of N-acetylcysteine (NAC) along with monoisoamyl DMSA (MiADMSA) against chronic arsenic poisoning in guinea pigs. Animal were exposed to 50 ppm arsenic in drinking water for 8 mo and subsequently treated for 5 consecutive days with 100 mg/kg NAC (orally) and MiADMSA (intraperitoneally), individually or in combination (50 mg/kg each). Arsenic exposure produced a significant depletion of blood δ-aminolevulinic acid dehydrate (ALAD) activity, increased the blood zinc protoporphyrin (ZPP) level, and reduced blood and liver glutathione (GSH) levels in guinea pigs. Hepatic oxidized glutathione (GSSG) and thiobarbituric acid reactive substance (TBARS) levels showed a marked increase, whereas hepatic alkaline phosphatase (ALP) activity decreased and acid phosphatase (ACP) activity increased on arsenic exposure. Significant depletion of liver transaminase activities on arsenic exposure suggests organ injury. Administration of MiADMSA, alone and in combination with NAC after arsenic exposure, was able to significantly enhance hepatic GSH and to reduce GSSG and TBARS levels compared to the arsenic control. Biochemical variables indicative of liver injury generally remained insensitive to any of these treatments. The recoveries in parameters indicative of oxidative stress were more marked in guinea pigs treated with combined administration of NAC and MiADMSA than monotherapy. Interestingly, there was a more pronounced depletion of arsenic from blood and tissues after combined treatment with NAC plus MiADMSA than MiADMSA. Blood and tissues copper, zinc, iron, and calcium concentrations showed a significant increase after arsenic exposure, which showed improvement, particularly after combined administration of MiADMSA and NAC. Based on these data, a proposal can be made that greater effectiveness in chelation treatment against chronic arsenic poisoning (i.e., turnover in the oxidative stress and removed of arsenic from the system) could be achieved by combined administration of an antioxidant (preferably having a thiol moiety) with MiADMSA.  相似文献   

5.
Arsenic and fluoride are major contaminants of drinking water. Mechanisms of toxicity following individual exposure to arsenic or fluoride are well known. However, it is not explicit how combined exposure to arsenic and fluoride leads to cellular and/or DNA damage. The present study was planned to assess (i) oxidative stress during combined chronic exposure to arsenic and fluoride in drinking water, (ii) correlation of oxidative stress with cellular and DNA damage and (iii) mechanism of cellular damage using IR spectroscopy. Mice were exposed to arsenic and fluoride (50 ppm) either individually or in combination for 28 weeks. Arsenic or fluoride exposure individually led to a significant increase in reactive oxygen species (ROS) generation and associated oxidative stress in blood, liver and brain. Individual exposure to the two toxicants showed significant depletion of blood glutathione (GSH) and glucose 6-phosphate dehydrogenase (G6PD) activity, and single-stranded DNA damage using a comet assay in lymphocytes. We also observed an increase in the activity of ATPase, thiobarbituric acid reactive substance (TBARS) and a decreased, reduced and oxidized glutathione (GSH?:?GSSG) ratio in the liver and brain. Antioxidant enzymes like superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were decreased and increased in liver and brain respectively. The changes were more pronounced in liver compared to brain suggesting liver to be more susceptible to the toxic effects of arsenic and fluoride. Interestingly, combined exposure to arsenic and fluoride resulted in less pronounced toxic effects compared to their individual effects based on biochemical variables, IR spectra, DNA damage (TUNEL and comet assays) and histopathological observations. IR spectra suggested that arsenic or fluoride perturbs the strength of protein and amide groups; however, the shifts in peaks were not pronounced during combined exposure. These results thus highlight the role of arsenic- or fluoride-induced oxidative stress, DNA damage and protein interaction as the major determinants of toxicity, along with the differential toxic effects during arsenic-fluoride interaction during co-exposure. The study further corroborates our earlier observations that at the higher concentration co-exposures to these toxicants do not elicit synergistic toxicity.  相似文献   

6.
7.
Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor dissociation binding techniques, the lifetimes of unidentate (<1s), bidentate (1-2min) and tridentate (1-2h) arsenite containing peptide binding complexes were estimated. According to our experimental data some of the protein targets to which arsenite may bind in vivo include tubulin, poly(ADP-ribose)polymerase (PARP-1), thioredoxin reductase, estrogen receptor-alpha, arsenic(+3)methyltransferase and Keap-1. Arsenite binding to tubulin can lead to several of the genetic effects observed after arsenic exposures (aneuploidy, polyploidy and mitotic arrests). Among many other possible arsenite binding sites are rat hemoglobin, the DNA repair enzyme xeroderma pigmentosum protein A (XPA), and other C2H2, C3H and C4 zinc finger proteins including members of the steroid receptor superfamily (e.g. glucocorticoid receptor). Macromolecules to which arsenite does not bind to include calf thymus DNA, mixed Type II-A histones and bovine H3/H4 histone. Although all six tested arsenicals released iron from ferritin, radioactive arsenite did not bind to the protein horse ferritin.  相似文献   

8.
The theme of the present work is to evaluate the protective effect of nanoencapsulated quercetin (NEQ) against chlorpyrifos (CPF)‐induced hepatic damage and immune alterations in animals. Nanoparticles (NP) drug encapsulation was prepared. Forty male Wistar rats were divided into eight groups. Two groups served as control and CPF (13.5 mg/kg) treatment for 28 days. Other three groups were free quercetin (QC), NP and NEQ treated with 3 mg/kg respectively for 15 days; whereas remaining three groups received treatment of CPF and QC, NP, NEQ, respectively, for 15 days. The results show that significantly altered oxidative stress in the liver tissue and liver enzyme parameters in blood and immune responses in CPF‐treated rats compared to controls. Administration of NEQ attenuated biochemical and immunological parameters. The liver histopathological analysis confirmed pathological improvement. Hence, use of NEQ appeared to be beneficial to a great extent in attenuating and restoring hepatic oxidative damage and immune alteration sustained by pesticide exposure.  相似文献   

9.
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40–200 μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220 μM CaCl2, cyclosporine A protected against permeability transition induced by 40 μM, but not 80 μM lysophosphatidylcholine. Incubation with 40–120 μM lysophosphatidylcholine also increased mitochondrial permeability to 75 μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80 μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30–50% at 100 μM lysophosphatidylcholine. Finally, while 40 μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100 μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.  相似文献   

10.
Arsenic-induced oxidative stress and its reversibility   总被引:2,自引:0,他引:2  
  相似文献   

11.
Boots AW  Bast A  Haenen GR 《FEBS letters》2005,579(3):677-682
Quercetin is one of the most studied alimentary antioxidants. During its antioxidant activity, quercetin becomes oxidized into its ortho-quinone/quinone methide, denoted as QQ. QQ is toxic since it is highly reactive towards thiols. DT-diaphorase (NQO1) might protect against QQ toxicity by reducing QQ to quercetin. However, conflicting data have been reported. The aim of the present study is to elucidate the role of DT-diaphorase in the protection against QQ-mediated thiol reactivity. It was found that QQ is indeed a substrate for DT-diaphorase. However, QQ reacted much faster with glutathione or protein thiols than with DT-diaphorase in experiments with isolated compounds as well as with human liver cytosol or blood plasma. This indicates that DT-diaphorase has no role in the protection against QQ.  相似文献   

12.
Requejo R  Tena M 《Phytochemistry》2005,66(13):1519-1528
To gain insight into plant responses to arsenic, the effect of arsenic exposure on maize (Zea mays L.) root proteome has been examined. Maize seedlings were fed hydroponically with 300 microM sodium arsenate or 250 microM sodium arsenite for 24 h, and changes in differentially displayed proteins were studied by two-dimensional electrophoresis and digital image analysis. About 10% of total detected maize root proteins (67 out of 700) were up- or down-regulated by arsenic, among which 20 were selected as being quite reproducibly affected by the metalloid. These were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 11 of them could be identified by comparing their peptide mass fingerprints against protein- and expressed sequence tag-databases. The set of identified maize root proteins highly responsive to arsenic exposure included a major and functionally homogeneous group of seven enzymes involved in cellular homeostasis for redox perturbation (e.g., three superoxide dismutases, two glutathione peroxidases, one peroxiredoxin, and one p-benzoquinone reductase) besides four additional, functionally heterogeneous, proteins (e.g., ATP synthase, succinyl-CoA synthetase, cytochrome P450 and guanine nucleotide-binding protein beta subunit). These findings strongly suggest that the induction of oxidative stress is a main process underlying arsenic toxicity in plants.  相似文献   

13.
Brain is highly prone to oxidative damage due to its huge lipid content and extensive energy requirements. Exogenous insult in brain via oxidative injury can lead to severe pathophysiological conditions. Age-dependent deterioration of normal brain functions is also noteworthy. Genistein, a polyphenolic isoflavonoid, obtained from the soy plant, is well known to protect against several diseased conditions. Here, in this study chronic brain toxicity model was developed using oral administration of arsenic for 90 days in adult and aged murines. We observed that intraperitoneal administration of genistein improved the arsenic induced behavioral abnormalities in the rats. It was also evident from the histopathological studies that the extent of tissue damage due to arsenic exposure was more in aged rats compared to the adults. Evaluation of different stress markers, intracellular ROS level and mitochondrial membrane potential revealed the involvement of oxidative stress and mitochondrial dysfunction in inducing brain damage in arsenic exposed murines. It was observed that genistein can significantly ameliorate the stressed condition in both the animal groups but the protective effect of genistein was more significant in the adult animals. The underlying signalling mechanism behind the cytotoxicity of arsenic was investigated and revealed that genistein exhibited neuroprotection significantly by modulating the JNK3 mediated apoptosis, ERK1/2 mediated autophagy and TNFα associated inflammatory pathways. Overall study infers that genistein has significant ameliorative effect of against age-dependent cytotoxicity of arsenic in murine brains.  相似文献   

14.
In order to clarify the basis of neuronal toxicity exerted by the shortest active peptides of amyloid beta-protein (Abeta), the toxic effects of Abeta(31-35) and Abeta(25-35) peptides on isolated rat brain mitochondria were investigated. The results show that exposure of isolated rat brain mitochondria to Abeta(31-35) and Abeta(25-35) peptides determines: (i) release of cytochrome c; (ii) mitochondrial swelling and (iii) a significant reduction in mitochondrial oxygen consumption. In contrast, the amplitude of these events resulted attenuated in isolated brain mitochondria exposed to the Abeta(31-35)Met35(OX) in which methionine-35 was oxidized to methionine sulfoxide. The Abeta peptide derivative with norleucine substituting Met-35, i.e., Abeta(31-35)Nle-35, had not effect on any of the biochemical parameters tested. We have further characterized the action of Abeta(31-35) and Abeta(25-35) peptides on neuronal cells. Taken together our result indicate that Abeta(31-35) and Abeta(25-35) peptides in non-aggregated form, i.e., predominantly monomeric, are strongly neurotoxic, having the ability to enter within the cells, determining mitochondrial damage with an evident trigger of apoptotic signals. Such a mechanism of toxicity seems to be dependent by the redox state of methionine-35.  相似文献   

15.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

16.
Flora SJ  Bhadauria S  Pant SC  Dhaked RK 《Life sciences》2005,77(18):2324-2337
Chronic arsenic toxicity is a widespread problem, not only in India and Bangladesh but also in various other regions of the world. Exposure to arsenic may occur from natural or industrial sources. The treatment that is in use at present employs administration of thiol chelators, such as meso 2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised with number of limitations due to their lipophobic nature, particularly for their use in cases of chronic poisoning. During chronic exposure, arsenic gains access into the cell and it becomes mandatory for a drug to cross cell membrane to chelate intracellular arsenic. To address this problem, analogs of DMSA having lipophilic character, were examined against chronic arsenic poisoning in experimental animals. In the present study, therapeutic efficacy of meso 2,3-dimercaptosuccinic acid (DMSA), sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), monoisoamyl DMSA (MiADMSA) were compared in terms of reducing arsenic burden, as well as recovery in the altered biochemical variables particularly suggestive of oxidative stress. Adult male Wistar rats were given 100-ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 50 mg/Kg (orally) once daily for 5 consecutive days. Arsenic exposure resulted in marked elevation in reactive oxygen species (ROS) in blood, inhibition of ALAD activity and depletion of GSH. These changes were accompanied by significant decline in blood hemoglobin level. MiADMSA was the most effective chelator in reducing ROS in red blood cells, and in restoring blood ALAD compared to two other chelators. Brain superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased, while ROS and TBARS increased significantly following arsenic exposure. There was a significant increase in the activity of glutathione-S-transferase (GST) with a corresponding decline in its substrate i.e. glutathione. Among all the three chelators, MiADMSA showed maximum reduction in the level of ROS in brain. Additionally, administration of MiADMSA was most effective in counteracting arsenic induced inhibition in brain ALAD, SOD and GPx activity. Based on these results and in particular higher metal decorporation from blood and brain, we suggest MiADMSA to be a potential drug of choice for the treatment of chronic arsenic poisoning. However, further studies are required for the choice of appropriate dose, duration of treatment and possible effects on other major organs.  相似文献   

17.
Oxidative stress a major cause of fluoride induced toxicity and mitochondrial impairment in common in experimental rats during chronic exposure of fluoride. Attempts have been made in the present experiment to diminish oxidative damage, combined therapy with (+)-catechin hydrate (an antioxidant) and sodium meta borate (chelator) were used. Fluoride intoxication in rats was performed by using 13 mg/kg NaF and both antioxidant CH and chelator SMB were used at a concentration of 8.98 μM/kg body weight. Mixture of CH and SMB in free or in PLGA nanocapsule encapsulated form were prepared. The efficacies of those formulations were tested in combating free radical mediated oxidative insult produced by sodium fluoride (NaF). The amalgamated therapy used in this experiment was shown to reduce fluoride levels in liver, brain and kidney from 9.5, 5.5, 6.3 μg/g to 4.6, 2, 2.6 μg/g, respectively. Our result indicated that the combined chelator and antioxidant therapy in nanocapsulated drug delivery system could provide a projection in combating fluoride induced mitochondrial impairment in rat model.  相似文献   

18.
We compared the therapeutic efficacy of captopril and a thiol chelating agent, meso 2,3-dimercaptosuccinic acid (DMSA) either individually or in combination against arsenite induced oxidative stress and mobilization of metal in rats. Animals were exposed to 100 ppm arsenite as sodium arsenite in drinking water for six weeks followed by treatment with DMSA (50 mg/kg, orally), captopril (50 mg/kg, intraperitoneally) either alone or in combination, once daily for 5 consecutive days. Arsenite exposure led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity, glutathione and platelet levels while significantly increased the level of reactive oxygen species (in RBCs). Hepatic reduced glutathione (GSH) level showed a significant decrease while, thiobarbituric acid reactive substances (TBARS) levels increased on arsenite exposure indicating arsenite induced hepatic oxidative stress. Kidney GSH, GSSG, catalase and TBARS remained unchanged on arsenite exposure. Treatment with DMSA was effective in increasing ALAD activity while, captopril was ineffective when given alone. Captopril when co-administered with DMSA also provided no additional beneficial effect on blood ALAD activity but significant brought altered platelet counts back to the normal value. In contrast, administration of captopril alone provided significant beneficial effects on hepatic oxidative stress, and in combination with DMSA provided a more pronounced recovery in the TBARS level compared to the individual effect of DMSA and captopril. Renal biochemical variables remained insensitive to arsenite and any of the treatments. Interestingly, combined administration of captopril with DMSA had a remarkable effect in depleting total arsenic concentration from blood and soft tissues. These results lead us to conclude that captopril administration during chelation treatment had some beneficial effects particularly on the protection of inhibited blood ALAD activity, and depletion of arsenic level. The study supports our earlier conclusion that a co-administration of an antioxidant is more beneficial than monotherapy with the chelating agents, in order to achieve optimal effects of chelation in arsenite toxicity.  相似文献   

19.
Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H+ conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.  相似文献   

20.
The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy–entropy compensation using combined effects of hydrophilic and hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号