首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensory receptors in the rostral portion of the beak skin of a single specimen of the rare long-beaked echidna, Zaglossus bruijnii, are described. Mucous glands which have been modified to accommodate sensory innervation, similar to those seen in Ornithorhynchus, are found in the rostral 2 cm of the beak skin, anterior to the maxillofacial foramen, at a density of approximately 12/mm2. The papillary epidermal portion of the gland ducts are walled by concentric layers of keratinocytes, and each duct is innervated by 10–15 myelinated nerve terminals. The mucous gland receptors in Zaglossus are intermediate in structure between those of Ornithorhynchus and Tachyglossus, but are similar enough to the former to suggest that electroreception may play a major role in the sensory experience of Zaglossus. Push-rod mechanoreceptors also occur throughout the same region of beak skin, and appear similar to those described for Tachyglossus.  相似文献   

2.
We present high temporal and spatial resolution maps in 3-dimensions of the electric field vector generated by the weakly electric fish, Apteronotus leptorhynchus. The waveforms and harmonic composition of the electric organ discharge (EOD) are variable around the fish but highly stable over long times at any position. We examine the role of harmonics on the temporal and spatial characteristics of the EOD, such as the slew rate and rostral-to-caudal propagation. We also explore the radial symmetry of the fish's field. There are major differences in the direction of the electric field vector at the head and caudal body. In the caudal part of the fish, the electric field vector rotates during the EOD cycle. However, rostral of the pectoral fin, the field magnitude and sign oscillate while maintaining relatively constant orientation. We discuss possible functional ramifications of these electric field patterns to electrolocation, communication, and electrogenesis.Abbreviations EOD electric organ discharge - EO electric organ - RMS root mean square - ADC analog-to-digital converter  相似文献   

3.
The vertebrate mitochondrial genome is highly conserved in size and gene content. Among the chordates there appears to be one basic gene arrangement, but rearrangements in the mitochondrial gene order of the avian lineages have indicated that the mitochondrial genome may be more variable than once thought. Different gene orders in marsupials and eutherian mammals leave the ancestral mammalian order in some doubt. We have investigated the mitochondrial gene order in the platypus (Ornithorhynchus anatinus), a representative of the third major group of mammals, to determine which mitochondrial gene arrangement is ancestral in mammals. We have found that the platypus mtDNA conforms to the basic chordate gene arrangement, common to fish, amphibians, and eutherian mammals, indicating that this arrangement was the original mammalian arrangement, and that the unusual rearrangements observed in the avians and marsupials are probably lineage-specific. Correspondence to: N.J. Gemmell  相似文献   

4.
The first stage of information processing in the electrosensory system involves the encoding of local changes in transdermal potential into trains of action potentials in primary electrosensory afferent nerve fibers. To develop a quantitative model of this encoding process for P-type (probability-coding) afferent fibers in the weakly electric fish Apteronotus leptorhynchus, we recorded single unit activity from electrosensory afferent axons in the posterior branch of the anterior lateral line nerve and analyzed responses to electronically generated sinusoidal amplitude modulations of the local transdermal potential. Over a range of AM frequencies from 0.1 to 200 Hz, the modulation transfer function of P-type afferents is high-pass in character, with a gain that increases monotonically up to AM frequencies of 100 Hz where it begins to roll off, and a phase advance with a range of 15–60 degrees. Based on quantitative analysis of the observed gain and phase characteristics, we present a computationally efficient model of P-type afferent response dynamics which accurately characterizes changes in afferent firing rate in response to amplitude modulations of the fish's own electric organ discharge over a wide range of AM frequencies relevant to active electrolocation. Accepted: 14 June 1997  相似文献   

5.
    
《Zoology (Jena, Germany)》2014,117(5):349-361
The Tachyglossidae (long- and short-beaked echidnas) are a family of monotremes, confined to Australia and New Guinea, that exhibit striking trigeminal, olfactory and cortical specialisations. Several species of long-beaked echidna (Zaglossus robusta, Zaglossus hacketti, Megalibgwilia ramsayi) were part of the large-bodied (10 kg or more) fauna of Pleistocene Australasia, but only the diminutive (2–7 kg) Tachyglossus aculeatus is widespread today on the Australian mainland. We used high-resolution CT scanning and other osteological techniques to determine whether the remarkable neurological specialisations of modern echidnas were also present in Pleistocene forms or have undergone modification as the Australian climate changed in the transition from the Pleistocene to the Holocene. All the living and extinct echidnas studied have a similar pattern of cortical gyrification that suggests comparable functional topography to the modern short-beaked form. Osteological features related to olfactory, trigeminal, auditory and vestibular specialisation (e.g., foramina and cribriform plate area, osseous labyrinth topography) are also similar in living and extinct species. Our findings indicate that despite differences in diet, habitat and body size, the suite of neurological specialisations in the Tachyglossidae has been remarkably constant: encephalisation, sensory anatomy and specialisation (olfactory, trigeminal, auditory and vestibular), hypoglossal nerve size and cortical topography have all been stable neurological features of the group for at least 300,000 years.  相似文献   

6.
    
How might electric fish determine, from patterns of transdermal voltage changes, the size, shape, location, and impedance of a nearby object? I have investigated this question by measuring and simulating electric images of spheres and ellipsoids near an Apteronotus leptorhynchus. Previous studies have shown that this fish's electric field magnitude, and perturbations of the field due to objects, are complicated nonliner functions of distance from the fish. These functions become much simpler when distance is measured from the axes of symmetry of the fish and the object, instead of their respective edges. My analysis suggests the following characteristics of high frequency electric sense and electric images. 1. The shape of electric images on the fish's body is relatively independent of a spherical object's radius, conductivity, and rostrocaudal location. 2. An image's relative width increases linearly with lateral distance, and might therefore unambiguously encode object distance. 3. Only objects with very large dielectric constants cause appreciable phase shifts, and the degree of shift depends strongly on water conductivity. 4. Several parameters, such as the range of electric sense, may depend on the rostrocaudal location of an object. Large objects may be detectable further from the head than the tail, and conversely, small objects may be detectable further from the tail than head. 5. Asymmetrical objects produce different electric images, correlated with their cross-sections, for different orientations and phases of the electric field. 6. The steep attenuation with distance of the field magnitude causes spatial distortions in electric images, somewhat analogous to the perspective distortion inherent in wide angle optical lenses.  相似文献   

7.
Modeling signal and background components of electrosensory scenes   总被引:5,自引:0,他引:5  
Weakly electric fish are able to detect and localize prey based on microvolt-level perturbations in the fishs self-generated electric field. In natural environments, weak prey-related signals are embedded in much stronger electrosensory background noise. To better characterize the signal and background components associated with natural electrolocation tasks, we recorded transdermal voltage modulations in restrained Apteronotus albifrons in response to moving spheres, tail bends, and large nonconducting boundaries. Spherical objects give rise to ipsilateral images with center-surround structure and contralateral images that are weak and diffuse. Tail bends and laterally placed nonconducting boundaries induce relatively strong ipsilateral and contralateral modulations of opposite polarity. We present a computational model of electric field generation and electrosensory image formation that is able to reproduce the key features of these empirically measured signal and background components in a unified framework. The model comprises an array of point sources and sinks distributed along the midline of the fish, which can conform to arbitrary body bends. The model is computationally fast and can be used to estimate the spatiotemporal pattern of activation across the entire electroreceptor array of the fish during natural behaviors.  相似文献   

8.
Monotremes have traditionally been considered a remnant group of mammals descended from archaic Mesozoic stock, surviving to the present day on the relatively isolated Australian continent. Challenges to this orthodoxy have been spurred by discoveries of 'advanced' Cretaceous monotremes (Steropodon galmani, Archer, M., et al., 1985. First Mesozoic mammal from Australia-an Early Cretaceous monotreme, Nature. 318, 363-366) as well as by results from molecular data linking monotremes to therian mammals (specifically to marsupials in some studies). This paper reviews the monotreme fossil record and briefly discusses significant new information from additional Cretaceous Australian material. Mesozoic monotremes (including S. galmani) were a diverse group as evidenced by new material from the Early Cretaceous of New South Wales and Victoria currently under study. Although most of these new finds are edentulous jaws (limiting dental comparisons and determination of dietary niches), a range of sizes and forms has been determined. Some of these Cretaceous jaws exhibit archaic features-in particular evidence for the presence of a splenial bone in S. galmani-not seen in therian mammals or in post-Mesozoic (Tertiary and Quaternary) monotreme taxa. Tertiary monotremes were either archaic ornithorhynchids (toothed platypuses in the genera Monotrematum and Obdurodon) or tachyglossids (large echidnas in the genera Megalibgwilia and Zaglossus). Quaternary ornithorhynchid material is referable to the sole living platypus species Ornithorhynchus anatinus. Quaternary echidnas, however, were moderately diverse and several forms are known (Megalibgwilia species; 'Zaglossus' hacketti; Zaglossus species and Tachyglossus aculeatus).  相似文献   

9.
Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish’s body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish’s self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of “electric color.” (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects.  相似文献   

10.
In this paper, we review data on the monotreme immune system focusing on the characterisation of lymphoid tissue and of antibody responses, as well the recent cloning of immunoglobulin genes. It is now known that monotremes utilise immunoglobulin isotypes that are structurally identical to those found in marsupials and eutherians, but which differ to those found in birds and reptiles. Monotremes utilise IgM, IgG, IgA and IgE. They do not use IgY. Their IgG and IgA constant regions contain three domains plus a hinge region. Preliminary analysis of monotreme heavy chain variable region diversity suggests that the platypus primarily uses a single VH clan, while the short-beaked echidna utilises at least 4 distinct VH families which segregate into all three mammalian VH clans. Phylogenetic analysis of the immunoglobulin heavy chain constant region gene sequences provides strong support for the Theria hypothesis. The constant region of IgM has proven to be a useful marker for estimating the time of divergence of mammalian lineages.  相似文献   

11.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   

12.
On the Status of Lysolecithin in Rat Cerebral Cortex During Ischemia   总被引:1,自引:4,他引:1  
Abstract: Lysolecithin (lysoglycerophosphocholine, LPC) was isolated from rat cerebral cortex and quantitatively analyzed at various times after postdecapitative ischemic treatment. In addition, different procedures for extraction and analysis of the LPC in brain were evaluated. Results indicated that LPC can be quantitatively extracted into the organic phase using the conventional extraction procedure with chloroform-methanol (2:1, vol/ vol). However, care should be taken to avoid using strong acids, which can hydrolyze the alkenylether side chain of the plasmalogens, resulting in the release of 2-acyl-phospholipids. Quantitative GLC analysis using myris-toyl-LPC as internal standard revealed a level of 1.8 nmol LPC/mg protein in brain with acyl groups comprised mainly of 16:0, 18:0, and 18:1. The acyl group profile reflects that the LPC are derived mainly from phospho-lipase A2 action. An increase of 46% in the LPC level was observed at 1 min after ischemic treatment, but this was followed by a steady decline. Ischemia induced an increase in the LPC species that are enriched in 18:0 and 18:1 fatty acids. The transient appearance of LPC during ischemia further suggests that this phospholipid is undergoing active turnover, possibly hydrolysis by the lysophospholipase. This mechanism of action may account, at least in part, for the increase in both saturated and unsaturated fatty acids during the early phase of the ischemic treatment.  相似文献   

13.
Brienomyrus niger fires its electric organ in short pulses of approximately 0.3 ms duration, at a rather irregular rate, which rapidly increases in novel situations. The animal electrolocates objects in its near field by evaluating electroreceptive feedback from its ownelectricorgandischarges (EODs). Electrolocation performance is measured by the critical distance at which an approaching nonconducting object of standard size and velocity is detected (Figs. 1, 3).Electrolocation performance is impaired when foreign pulses of sufficient intensity consistently coincide with the animal's own EODs, whereas noncoinciding pulses, even at intensities 10 times higher than that of the animal's own near field, have no effect. The animal needs at least 4 to 8 uncontaminated successive EODs to electrolocate optimally (Figs. 4, 5).  相似文献   

14.
Introduction The paddlefish electrosensory system consists of receptor cells in the skin that sense minute electric fields from their prey, small water fleas. The receptors thereby measure the difference of the voltage at the skin surface against the voltage inside the animal. Due to a high skin impedance, this internal voltage is considered to be relatively fixed. Results We found, however, that this internal voltage can fluctuate. It shows damped oscillations to a single short electric field pulse and changes, with some time delay, according to the previous history of stimulation, and shows resonance at a certain frequency. Conclusions Computer simulations show that these phenomena can be explained by the presence of delayed feedback where the internal voltage is part of the feedback loop.  相似文献   

15.
Electrolocation in the presence of jamming signals: behavior   总被引:1,自引:0,他引:1  
Electrolocation behavior of Apteronotus leptorhynchus was studied by monitoring the animal's ability to maintain orientation to a variety of moving electrolocation targets. The primary goal of this study was to determine the relative effectiveness of various types of electrical 'jamming signals' in disrupting electrolocation performance. 1. Two measures of electrolocation performance were used: The latency between the electrolocation target motion and the fish's following response, and the minimum distance separating the fish from the target during the target movement sequence. Latency increased and minimum fish-target distance decreased as target size was decreased, and when large diameter ceramic targets were used as control stimuli the fish were less able to avoid, and frequently collided with, these 'electrically transparent' objects. 2. Four types of jamming signals were used in attempts to mask the electrosensory input used for electrolocation. Broad-band noise and sinusoidal signals, different in frequency by a few Hz from the animal's personal electric organ discharge (DF stimuli), were used to jam the tuberous electroreceptors. Five Hz and 50 Hz sinusoidal signals were used to jam the low-frequency or ampullary receptor system. Both the noise and the DF stimuli were effective in reducing electrolocation performance, and the threshold intensity for behavior deterioration was about three-fold lower for DF stimuli as compared to the noise. The rate of change of response deterioration as a function of increasing jamming intensity was, however, not different for these two types of stimuli. Neither the 50 Hz nor the 5 Hz jamming signals caused electrolocation deterioration when presented alone. However, 5 Hz jamming, when added to either the noise or DF jamming, did result in significant increments in response deterioration. This suggests that the ampullary receptors can provide supplementary information for electrolocation. 3. Electrolocation performance deterioration was also studied with various difference frequencies between an animal's EOD and the sinusoidal jamming stimulus. Increasing DF results in decreased electrolocation deterioration, but even at the highest DF frequencies used (128 Hz) significant response degradation was observed. 4. The apparent differences in the effectiveness of noise and DF stimulation in reducing electrolocation performance are largely accounted for by the differential effects of the tuberous electroreceptor filter characteristics on these two types of signals.  相似文献   

16.
Responses of ampullary and tuberous electroreceptor afferents were studied using moving electrolocation targets and electrical modulations of the animal's electric organ discharge as stimuli. The ability of the electroreceptors to encode these stimuli was measured with and without various forms of electrical jamming signals. The goal of this study was to measure the deterioration in electroreceptor responses due to the jamming signals, and to compare these results with the behavioral measures of electrolocation under the same conditions of jamming as described in the preceding report (Bastian 1987). 1. Three types of jamming stimuli were used to interfere with the tuberous electroreceptor afferents' ability to respond to the test stimuli mentioned above: Broad-band noise, high frequency stimuli consisting of a sinusoidal waveform having a frequency maintained at a chosen difference frequency (DF) from the EOD frequency of the fish being studied, and 5 or 50 Hz sinusoidal stimuli. 2. The tuberous receptor afferents' spontaneous frequency was sensitive to continuous presentation of all but the 5 Hz jamming signals. The 4 Hz DF signal caused the largest increase in spontaneous activity, the 50 Hz stimulus was intermediate in effectiveness, and the noise stimulus caused the smallest increase. Estimates of the variability of the ongoing receptor activity were also made, and both the 4 Hz DF and the 50 Hz stimuli reduced the coefficient of variation of the receptor activity, but noise had no significant effect on this parameter. Noise, 4 Hz DF, and 50 Hz jamming signals also reduced the tuberous receptors' responses to a 100 ms EOD amplitude modulation, and the 5 Hz stimulus was again ineffective. 3. Noise and 4 Hz DF jamming were also effective in reducing tuberous receptor afferents' responses to a moving metal electrolocation target. The 4 Hz DF stimulus was most effective in reducing the receptor's ability to encode information about the target. Receptor responses showed about a three-fold larger decrease per 10 dB increase in DF jamming amplitude as compared to similar sized increases in noise amplitude. Threshold target distances were also determined with and without noise and DF jamming, and again, the noise stimulus was less effective in reducing the distance at which electrolocation targets were just detectable. 4. Recordings from ampullary receptor afferents confirmed that the galvanic potentials produced by metal electrolocation targets stimulate these receptors while EOD distortions caused by such objects probably do not.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Complementary DNAs encoding immunoglobulin light chains were isolated from two monotreme species, Ornithorhynchus anatinus (duckbill platypus) and Tachyglossus aculeatus (echidna). The sequences of both the variable and constant regions of these clones had greater similarity to IGK than to other light chain classes and phylogenetic analyses place them squarely within the mammalian IGK group, establishing them as monotreme IGK homologues. The constant region sequences of all clones were essentially identical within each species and, along with Southern blot results, the data are consistent with a single IGKC in each species. The expressed IGKV repertoires from both platypus and echidna were randomly sampled and there appear to be at least four platypus and at least nine echidna IGKV subgroups. The IGKV subgroups are highly divergent within species, in some cases sharing as little as 57% nucleotide identity. Two of the IGKV subgroups are present in both species, so there is some degree of overlap in the germline repertoires of these two monotremes. Overall the complexity seen in platypus and echidna IGK light chains is comparable with that of other mammals considered to have high levels of germline diversity and is in contrast to what has been found so far for monotreme IGL.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

18.
Quantitative aspects of the pathway leading to the formation of asparagine-linked oligosaccharides were investigated in rat cerebral cortex. Steady-state labeling conditions were achieved with [2-3H]mannose by developing a micromethod of incubation of cerebral cortex particles in the presence of physiological concentrations of glucose (1 g/L). The rate of [2-3H]mannose uptake and incorporation into protein was markedly affected when the concentration of glucose was lowered to 0.05 g/L. It was found that in the presence of glucose (1 g/L), a minor fraction of the utilized [2-3H]mannose is used in glycoprotein formation and the remaining labeled sugar enters the other major metabolic pathways, generating tritiated water which is rapidly exchanged with that of the medium. Under these conditions, the intracellular isotopic dilution of [2-3H]mannose-labeled precursors was calculated to be about 11.5-fold. These data allow determination of the rate of the net transfer of mannose into proteins. Comparison of the rate of glycosylation between 5- and 30-day-old cerebral cortex revealed a striking difference: 2.1 and 0.3 ng of mannose/mg protein/h, respectively.  相似文献   

19.
The layered organization of the cerebral cortex develops in an inside-out pattern, a process which is controlled by the secreted protein reelin. Here we report on cortical lamination in the Gli3 hypomorphic mouse mutant XtJ/Pdn which lacks the cortical hem, a major source of reelin+ Cajal Retzius cells in the cerebral cortex. Unlike other previously described mouse mutants with hem defects, cortical lamination is disturbed in XtJ/Pdn animals. Surprisingly, these layering defects occur in the presence of reelin+ cells which are probably derived from an expanded Dbx1+ progenitor pool in the mutant. However, while these reelin+ neurons and also Calretinin+ cells are initially evenly distributed over the cortical surface they form clusters later during development suggesting a novel role for Gli3 in maintaining the proper arrangement of these cells in the marginal zone. Moreover, the radial glial network is disturbed in the regions of these clusters. In addition, the differentiation of subplate cells is affected which serve as a framework for developing a properly laminated cortex.  相似文献   

20.
Our modeling study examines short-term plasticity at the synapse between afferents from electroreceptors and pyramidal cells in the electrosensory lateral lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. It focusses on steady-state filtering and coherence-based coding properties. While developed for electroreception, our study exposes general functional features for different mixtures of depression and facilitation. Our computational model, constrained by the available in vivo and in vitro data, consists of a synapse onto a deterministic leaky integrate-and-fire (LIF) neuron. The synapse is either depressing (D), facilitating (F) or both (FD), and is driven by a sinusoidally or randomly modulated Poisson process. Due to nonlinearity, numerically computed input-output transfer functions are used to determine the filtering properties. The gain of the response at each sinusoidally modulated frequency is computed by dividing the fitted amplitudes of the input and output cycle histograms of the LIF models. While filtering is always low-pass for F alone, D alone exhibits a gain resonance (non-monotonicity) at a frequency that decreases with increasing recovery time constant of synaptic depression (tau(d)). This resonance is mitigated by the presence of F. For D, F and FD, coherence improves as the synaptic conductance time constant (tau(g)) increases, yet the mutual information per spike decreases. The information per spike for D and F follows opposite trends as their respective time constants increase. The broadband but non-monotonic gain and coherence functions seen in vivo suggest that D and perhaps FD dynamics are involved at this synapse. Our results further predict that the likely synaptic configuration is a slower tau(g), e.g. via a mixture of AMPA and NMDA synapses, and a relatively smaller synaptic facilitation time constant (tau(f)) and larger tau(d) (with tau(f) smaller than tau(d) and tau(g)). These results are compatible with known physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号