首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If thin sections of Escherichia coli, labeled uniformly with tritium, are radioautographed calculations, based on the distribution of section sizes show that the number of H3 decays per section should be very close to a Poisson distribution. We might, therefore, expect that the distribution of radioautographic grain counts among random cross-sections should follow a Poisson distribution. It can then be inferred that a deviation from a Poisson indicates a high concentration of label in a preferred region. This region can then be identified by analysis of serial section and comparison with electron micrographs. Sections of cells labeled with leucine-H3 gave a Poisson distribution of grain counts, and it was concluded that proteins were distributed fairly uniformly throughout the cell. The situation was not changed if labeled cells were placed in chloramphenicol or if very short pulses of label were used. When Escherichia coli is grown in presence of chloramphenicol a major morphological change concerns the nuclear region: it becomes more regular in outline, nearly spherical, and occupies a smaller proportion of the cell length. The previously described association between DNA labeled with thymidine-H3 and the nuclear region was confirmed by showing that the distribution of the label in the cell followed exactly the morphological changes of the nuclear region. It was also shown that the concentration of DNA in the nuclear region was at least 45 times higher than that of the cytoplasm. Several morphological features of cells grown in chloramphenicol and examined in the electron microscope are discussed.  相似文献   

2.
The pattern of ribonucleic acid synthesis during germ cell development, from the stem cell to the mature spermatid, was studied in the mouse testis, by using uridine-H3 or cytidine-H3 labeling and autoradiography. Incorporation of tritiated precursors into the RNA occurs in spermatogonia, resting primary spermatocytes (RPS), throughout the second half of pachytene stage up to early diplotene, and in the Sertoli cells. Cells in leptotene, zygotene, and in the first half of pachytene stage do not synthesize RNA. No RNA synthesis was detected in meiotic stages later than diplotene, with the exception of a very low rate of incorporation in a fraction of secondary spermatocytes and very early spermatids. At long intervals after administration of the tracer, as labeled cells develop to more mature stages, late stages of spermatogenesis also become labeled. The last structures to become labeled are the residual bodies of Regaud. Thus, the RNA synthesized during the active meiotic stages is partially retained within the cell during further development. The rate of RNA synthesis declines gradually with the maturation from type A to intermediate to type B spermatogonia and to resting primary spermatocytes. "Dormant" type A spermatogonia synthesize little or no RNA. The incorporation of RNA precursors occurs exclusively within the nucleus: at later postinjection intervals the cytoplasm also becomes labeled. In spermatogonia all mitotic stages, except metaphase and anaphase, were shown to incorporate uridine-H3. RNA synthesis is then a continuous process throughout the cell division cycle in spermatogonia (generation time about 30 hours), and stops only for a very short interval (1 hour) during metaphase and anaphase.  相似文献   

3.
Factors involved in the expression of gene activity in polytene chromosomes   总被引:12,自引:0,他引:12  
H. D. Berendes 《Chromosoma》1968,24(4):418-437
In order to separate some of the factors involved in the formation of puffs the antibiotic actinomycin D was applied at different stages of puff activity. Puffs were induced by temperature shocks or eodysone.Inhibition of RNA synthesis with actinomycin D before application of a puff inducing stimulus prevents neither the appearance of the stimulus specific puffs nor the accumulation of acidic proteins in the puff regions. The puffs attained under these conditions approximately 1/3 of the size normally produced by the stimulus.Indications were obtained that during puff formation acidic protein accumulation precedes the onset of RNA synthesis.Synthesis and storage of newly synthesized RNA within the puff region was studied on the basis of grain distribution in uridine-H3 autoradiographs after various incubation periods. RNA synthesis appears to be restricted to a particular area of the puff region. After a 3 min temperature shock following injection of uridine-H3 silver grains are located only over a particular area of the newly formed puff. The same area becomes labeled during a 1 min pulse of uridine-H3 applied at a stage of maximum puff development. Longer periods of incubation result in a random distribution of the grains over the whole puff region. Grain counts on different areas of experimentally induced puffs and on the same areas at a stage of puff regression indicate that the newly synthesized RNA becomes transferred from the area where it was synthesized and is stored for a certain period within the puff region. Complete release of newly synthesized RNA from puffs in which RNA synthesis was inhibited by actinomycin D at a stage of maximal activity is accomplished within 30 to 35 min.  相似文献   

4.
Summary A large DNA containing body is found in oocytes of the house cricket, Acheta domesticus. Little or no RNA synthesis is associated with the DNA body during the leptotene, zygotene, and pachytene stages of meiotic prophase I. During the early diplotene stage of development, large masses of nucleolar material begin to accumulate at the periphery of the DNA body. The onset of RNA synthesis correlates with a change in the histochemically detectable histone proteins associated with the DNA body. In ovaries of animals injected with uridine-H3, most of the label accumulates in ribosomal RNA. Autoradiographic studies show that the cytoplasm of late diplotene stage cells accumulates uridine label to a greater extent than does the cytoplasm of early diplotene stage cells. Increased transport of nucleolar material through the nuclear envelope of late diplotene stage cells accounts for the increased cytoplasmic labeling.This investigation was supported by PHS Research Grant No. GM 16440 from the Institute of General Medical Sciences, and by Grants No. L-16 and J-1 from the Health Research and Services Foundation.The authors gratefully acknowledge the technical assistance of Mrs. Marcia Andrews and Miss Celeste Malinoski.  相似文献   

5.
Incorporation of tritiated adenosine into mouse ovum RNA   总被引:1,自引:0,他引:1  
The total RNA of ovulated mouse ova has been examined by polyacrylamide gel electrophoresis. The amount of RNA present in the two main peaks observed, 28 S and 18 S ribosomal RNA, has been estimated as 0.20 ng.The RNA of ovulated mouse ova was labeled by exposure of growing mouse oocytes to adenosine-8-3H in vivo. For this purpose a small volume of a concentrated solution of the precursor was injected into the ovarian bursa, and ova were collected by superovulation at various subsequent times. The major growth phase of the oocyte is known to lie between 20 and 6 days before ovulation. Significant incorporation into egg RNA was observed when bursal injection was performed between 19 and 7 days, but not between 5 days and 1 day before ovulation.The types of labeled RNA in ova ovulated at five intervals between 19 and 7 days after bursal injection of adenosine-8-3H or uridine-5,6-3H were analyzed by polyacrylamide gel electrophoresis. The distribution of label on the gels demonstrated that the bulk of the label appeared in ribosomal RNA and transfer RNA. In addition labeled heterogeneous RNA was estimated to represent 10–15% of the total incorporation.  相似文献   

6.
Summary The labelling of nucleic acids of growing cells of the blue-green algae Anacystis nidulans and Synechocystis aquatilis by radioactive precursors has been studies. A. nidulans cells most actively incorporate radioactivity from [2-14C]uracil into both RNA and DNA, while S. aquatilis cells incorporate most effectively [2-14C]uracil and [2-14C]thymine.Deoxyadenosine does not affect incorporation of label from [2-14C]thymidine into DNA, but weakly inhibits [2-14C]thymine incorporation into both nucleic acids and significantly suppresses the incorporation of [2-14C]uracil.The radioactivity from [2-14C]uracil and [2-14C]thymine is found in RNA uracil and cytosine and DNA thymine and cytosine. The radioactivity of [2-14C]thymidine is incorporated into DNA thymine and cytosine. These results and data of comparative studies of nucleic acid labelling by [2-14C]thymine and [5-methyl-14C]thymine suggest that the incorporation of thymine and thymidine into nucleic acids of A. nidulans and S. aquatilis is accompanied by demethylation of these precursors. In this respect blue-green algae resemble fungi and certain green algae.  相似文献   

7.
The current knowledge concerning the biosynthesis of chloramphenicol is discussed. Cultures of Streptomyces sp. 3022a fed 14C-shikimie acid incorporated the label to the same extent into phenylalanine, tyrosine, and chloramphenicol. Of possible precursors of the phenylpropanoid nucleus of this antibiotic only p-aminophenylalanine and DL-threo-p-amino phenylserine specifically labeled chloramphenicol. On the basis of these results a pathway for the biosynthesis of chloramphenicol is presented. The lack of specific incorporation of 15N-nitrogen from a competitive feeding experiment in which both l5N-nitrate and 14N-DL-serine were fed to growing cultures suggests that both the amido- and the nitro-nitrogen atom present in this antibiotic are derived from a common pool. Studies on the enzyme, DAHP synthetase, show that in streptomyces sp. 3022a it is not subject to feed back inhibition by either phenylalanine, tyrosine, or chloramphenicol.  相似文献   

8.
[2-3H]Glycerol and [1-14C]arachidonic acid were injected into the region of the frontal horn of the left ventricle of mice and were distributed rapidly throughout the brain. After 10 sec, most of the radioactive fatty acid was found in the hemisphere near the injection site; after 10 min, it was recovered in similar proportions in the cerebellum and brain stem. [2-3H]Glycerol showed a heterogeneous distribution, with most of the label remaining in the left hemisphere even after 10 min. On a fresh weight basis, cerebrum, cerebellum, and brain stem were found to contain similar amounts of labeled glycerol. However, the amount of [1-14C]arachidonate in cerebrum was only 50% of that recovered from cerebellum or brain stem. Brain ischemia or a single electroconvulsive shock reduced the spread of the label, producing an accumulation of radioactivity in the injected hemisphere, except for an increase in [2-3H]glycerol in the brain stem during ischemia. Despite the significant decrease in available precursor in the cerebellum and brain stem after electroshock, the amount of label incorporated into lipids was not altered in these areas and only slightly diminished in the cerebrum.  相似文献   

9.
The disappearance of 2-13C-acetate and the subsequent incorporation of label into cellular metabolites were followed in denitrifying cells of Thiobacillus versutus by 13C NMR spectroscopy. In cells grown under acetate-limitation, the specific rate of consumption was idependent of the density of the cell suspension. An isotopic steady state was reached within 30 min if sufficient substrate was added to the cell suspension. In cells grown under nitrate-limitation, the consumption of 2-13C-acetate proceeded at a significantly lower rate. The decrease and final disappearance of 2-13C-acetate were accompanied by incorporation of 13C into glutamate, glutamine, and by the release of labeled HCO 3 and CO2. The appearance of a broad resonance being the methyl endgroup of poly-3-hydroxybutyrate (PHB) was indicative for PHB mobilization during the incubation. The sequence of label incorporation and the distribution among the various carbon nuclei were consistent with the operation of the tricarboxylic acid cycle.  相似文献   

10.
[2-14C]-uridine is rapidly taken up by sycamore cells in suspensionculture. A proportion of the radioactivity enters RNA withoutmeasurable delay, whilst the remainder equilibrates with a largepool of phosphorylated compounds, the major radioactive componentof which is 5'-UMP. Both the uracil and cytosine residues ofRNA receive label from [14C]-uridine and, when the cells aresupplied with high concentrations of uridine, these bases arederived almost exclusively from the nucleoside. [14C]-uridine is incorporated into RNA at all stages of thegrowth cycle of batch cultures; its continuing incorporation,when the total RNA content of the cells is rapidly decreasing,indicates a high rate of turnover of the total RNA. Long-termlabelling experiments also indicate turnover of RNA during thephase of active cell division and suggest that a large proportionof the degradation products are not re-utilized for RNA synthesis. Sycamore cells degrade [2-14C]-uridine with release of 14CO2.The proportion degraded increases from 25 per cent at an externaluridine concentration of 10–6M to 75 per cent at 10–3M. Despite this, nucleic acids are the only macromolecules thatreceive a significant amount of radioactivity from [2-14]C-uridine.  相似文献   

11.
12.
The incorporation of 5-3H-uridine and 5-3H-cytidine into nucleolar and nonnucleolar RNA in the nucleus of monkey and pig kidney cells was measured in vitro during the cell life cycle. Time-lapse cinematographic records were made of cells during asynchronous exponential proliferation, in order to identify the temporal position of individual cells in relation to the preceding mitosis. Immediately following cinematography, cells were labeled with uridine-3H and cytidine-3H for a short period, fixed, and analyzed by radioautography. Since the data permit correlation of the rate of RNA labeling with the position of a cell within the cycle, curves could be constructed describing the rate of RNA synthesis over the average cell cycle. RNA synthesis was absent in early telophase, and rose very abruptly in rate in late telophase and in very early G1 in both the nucleus and the reconstituting nucleolus. Thereafter, through the G1 and S periods the rate of nuclear RNA synthesis rose gradually. When we used a 10-min pulse, there was no detectable change in the rate for nucleolar RNA labeling in monkey kidney cells during G1 or S. When we used a 30-min labeling time, the rate of nucleolar RNA labeling rose gradually in pig kidney cells. With increasing time after mitosis, the data became more variable, which may, in part, be related to the variation in generation times for individual cells.  相似文献   

13.
Summary 5-3H-uridine injected into the stylar canal of detached lily stigma-styles was taken up initially into the rapidly-labeled-RNA of the nucleic acid profile of a methylated albumin kieselguhr (MAK) column but with increasing time was found in all portions of the RNA profile, but not in the DNA. Heat treatment of the style before injection of 5-3H-uridine greatly reduced the rate of incorporation of label into and the ultimate amount of label found in the RNA species of the lily style. Translocation of 5-3H-uridine through the ovary into heattreated pistils and the injection of 5-3H-uridine into styles which had been incubated for 1 or 2 days after heat treatment resulted in stylar nucleic acids more highly labeled than nucleic acids in control styles, with an incorporation pattern different than control styles. Heat treatment of lily pistils resulted in detectable changes in the proportion of stylar RNA species as separated on MAK columns and measured as absorbance units. Actinomycin D and 6-methylpurine treated styles incorporated label from a stylar injection of radioactive uridine in patterns different than each other, different than heat-treated styles and different than non-treated styles. 6-methylpurine and heat treatment of styles only slightly reduced the rate at which 5-3H-uridine was removed from the stylar canal into the stylar tissue.Paper number 8917 of the Scientific Journal Series, Minn. Agr. Exp. Sta., St. Paul, MN 55108.  相似文献   

14.
The incorporation of [methyl-3H]thymidine into three macromolecular fractions, designated as DNA, RNA, and protein, by bacteria from Hartbeespoort Dam, South Africa, was measured over 1 year by acid-base hydrolysis procedures. Samples were collected at 10 m, which was at least 5 m beneath the euphotic zone. On four occasions, samples were concurrently collected at the surface. Approximately 80% of the label was incorporated into bacterial DNA in surface samples. At 10 m, total incorporation of label into bacterial macromolecules was correlated to bacterial utilization of glucose (r = 0.913, n = 13, P < 0.001). The labeling of DNA, which ranged between 0 and 78% of total macromolecule incorporation, was inversely related to glucose uptake (r = -0.823), total thymidine incorporation (r = -0.737), and euphotic zone algal production (r = -0.732, n = 13, P < 0.005). With decreased DNA labeling, increasing proportions of label were found in the RNA fraction and proteins. Enzymatic digestion followed by chromatographic separation of macromolecule fragments indicated that DNA and proteins were labeled while RNA was not. The RNA fraction may represent labeled lipids or other macromolecules or both. The data demonstrated a close coupling between phytoplankton production and heterotrophic bacterial activity in this hypertrophic lake but also confirmed the need for the routine extraction and purification of DNA during [methyl-3H]thymidine studies of aquatic bacterial production.  相似文献   

15.
Although about 70% of rat thoracic duct small lymphocytes labeled readily in vitro with 3H-uridine, only 3–38% of peritoneal exudate lymphocytes labeled. Since exudate cells are mostly B lymphocytes, 3H-uridine in concentrations used were presumed to label the T lymphocyte. Percentages of small lymphocytes that labeled in cell suspensions from various tissues were consistent with other estimates of T cells in those sources: 74.7% in thoracic duct, 70.2% in blood and 65.6% in spleen. When lymphopenia was induced by polyethylene 32P strips applied to the spleen, a procedure that depletes mostly small recirculating lymphocytes, both labeled (T) and nonlabeled (B) cells were depleted in similar time sequence. Both cell types recovered at a similar rate after the spleen strips were removed. Induction of peritoneal inflammation by PPD in tubercle-bacilli immune rats caused an enhanced lymphocytic exudation but no increase in percentage of labeled (T) lymphocytes.The defect in 3H-uridine incorporation that characterizes the rat B lymphocyte seemed to be relatively specific for that RNA precurser; 3H-cytidine labeled the majority of lymphocytes in peritoneal exudate.  相似文献   

16.
E. coli B, filamented with 5-diazouracil (DZU)-2-14C, yielded ribonucleic acid (RNA)-(DZU-2-14C) which was converted by pancreatic ribonuclease to 14C-mono-and oligo-nucleotides. The mixed 14C-mononucleotides isolated by diethylaminoethyl-cellulose fractionation were identified as cytidylic, uridylic, and hydroxyuridylic acids, by using a combination of paper chromatography and treatment with alkaline phosphatase and cytidine deaminase. Rifampin blocked incorporation of DZU-2-14C under conditions which inhibit RNA synthesis. Division inhibition by DZU-2-14C and the incorporation into Escherichia coli B were retarded by uracil but not by other RNA bases. In a pyrimidine-requiring E. coli, DZU substituted for uracil or cytosine to an extent limited by toxic effects. Cytosine and uracil retarded these effects and retarded the incorporation of DZU-2-14C into the pyrimidineless strain. A small proportion of DZU-2-14C was converted by the latter strain into hydroxyuridylic acid, but the bulk of the incorporated label was in cytidylic and uridylic acid, as in the wild strain.  相似文献   

17.
The effect has been studied of Actinomycin D, Daunomycin (Da.), and Da. N acetyl derivative on mitotic activity and on the nucleic acid synthesis of in vitro HeLa cell cultures. The experiments were carried out by means of the radioautographic technique using stripping films. The relative uptake of thymidine-H3 and uridine-H3 was determined by means of the reduced silver grain count present in the nuclei of controls and treated cells. The mitotic activity and thymidine incorporation were noticeably reduced by Daunomycin and Actinomycin, whereas both processes appeared less affected by Da. N acetyl derivative. As regards nuclear RNA synthesis, all three antibiotics at low doses chiefly inhibit nucleolar RNA synthesis. On the other hand, whilst Actinomycin at higher doses causes an almost total inhibition of the synthesis of the whole nuclear RNA, in Daunomycin- and Da. N acetyl derivative-treated cells extranucleolar RNA synthesis is less susceptible to inhibition.  相似文献   

18.
The [125I]UdR loss technique was used to estimate cell loss from RIF-1, EMT6 and KHJJ tumors in order to determine the length of the delay between labeling and the beginning of the loss of labeled cells, and also to calculate a value for ø, the cell loss factor. To determine the importance of reutilization of label released from the gut and/or the influx of labeled host cells, the blood flow to some tumors was occluded during and for 30 min after injection of the label. Relatively small amounts of radioactivity entered occluded RIF-1 tumors during 9 days after injection of [125I]UdR, indicating that reutilization of systemic label and influx of labeled host cells are not significant in this system. In contrast, substantial amounts of radioactivity entered occluded EMT6 and KHJJ tumors, reaching 40% of the total activity in non-occluded tumors during 6 days following injection. After corrections were made for this influx of label, the [125I]UdR loss curves from RIF-1 and EMT6 tumors were essentially exponential from the first day following injection of label. This was interpreted as indicating the loss of proliferating as well as non-proliferating cells from both tumors. The cell loss factor derived from the [125I]UdR loss curves corrected for influx appeared to agree well with published values derived from analysis of percent labeled mitoses curves. In contrast, the corrected [125I]UdR loss curves from KHJJ tumors showed that loss of activity began three days after injection of label, indicating that primarily nonproliferating cells are lost from this tumor.  相似文献   

19.
Soybean Glycine max L. Merrill var. Amsoy 71 root callus tissue labeled with [1-14C]2,4-dichlorophenoxyacetic acid (2,4-D) which was subsequently incubated for 24 hours in the absence of 2,4-D, released considerable amounts of label into the media. These results led to an examination of the efflux of 2,4-D and 2,4-D metabolites during a 6-hour time period. Fifty% of the free 2,4-D was lost in 15 minutes and 99% in 6 hours. After 6 hours, only about 48% of the ether-soluble fraction (mainly the glutamic and aspartic conjugates) and about 33% of the aqueous-soluble fraction (mainly hydroxylated glycosides) effluxed from the tissue. Neutral red efflux from stained callus tissue was enhanced only 5% above the control by treatment with 7.5% dimethylsulfoxide (DMSO) and 50% with 20% DMSO. Similar soybean callus tissue preincubated with [1-14C]2,4-D and subsequently incubated with H2O, 7.5% DMSO, and 20% DMSO was examined for efflux of 14C label. DMSO similarly enhanced the efflux of the ether and aqueous soluble conjugates.

DMSO concentrations of less than 10% did not damage the vacuolar membranes which also has been reported with cultured tobacco cells (Delmer 1979 Plant Physiol 64: 623-629). From these data, it seems that the 2,4-D metabolites are located in a compartment of the cell and presumably the vacuole.

  相似文献   

20.
Photosynthesis experiments with 14CO2 established that of 16 Droseraceae species tested Drosophylum lusitanicum incorporated the highest amount of label into plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone). Tyrosine-[β-14C] fed to Drosophyllum was shown to label plumbagin efficiently (20% incorporation). Extensive chemical degradation of the labeled naphthoquinone showed, however, that the incorporation of tyrosine was indirect, the label being distributed throughout the molecule. It was established that plumbagin and the closely related 7-methyljuglone are biosynthesized via the acetate-polymalonate pathway. Tyrosine is broken down to acetate in this tissue via the homogentisate pathway, which was demonstrated by feeding and incorporation of label into plumbagin of intermediates such as homogentisate-[14C], maleyl- and fumarylacetoacetate-[14C]. Simultaneous application of tyrosine-[β-14C] and α,α′-bipyridyl, an inhibitor of the homogentisate oxigenase, led to an accumulation of homogentisate-[14C] within the tissue. The degradation of tyrosine to acetate by Drosophyllum is not due to epiphytic bacteria since ring cleavage of tyrosine and formation of plumbagin from breakdown products occurred both within sterile grown plants and sterile cell suspension cultures. In tissue kept in darkness, plumbagin undergoes a slow turnover with a half life of about 400 hr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号