首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrolysis of p-nitrophenyl phosphate catalyzed by the erythrocyte membrane Ca2+-ATPase is stimulated by low concentrations of the compound 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a classic inhibitor of anion transport. Enhancement of the phosphatase activity varies from 2- to 6-fold, depending on the Ca2+ and calmodulin concentrations used. Maximum stimulation of the pNPPase activity in ghosts is reached at 4-5 microM DIDS. Under the same conditions, but with ATP rather than pNPP as the substrate, the Ca2+-ATPase activity is strongly inhibited. Activation of pNPP hydrolysis by DIDS is equally effective for both ghosts and purified enzyme, and therefore is independent of its effect as an anion transport inhibitor. Binding of the activator does not change the Ca2+ dependence of the pNPPase activity. Stimulation is partially additive to the activation of the pNPPase activity elicited by calmodulin and appears to involve a strong affinity binding or covalent binding to sulfhydryl groups of the enzyme, since activation is reversed by addition of dithiothreitol but not by washing. The degree of activation of pNPP hydrolysis is greater at alkaline pH values. DIDS decreases the apparent affinity of the enzyme for pNPP whether in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+ (with 5 microM DIDS the observed Km shifts from 4.8 +/- 1.4 to 10.1 +/- 2.6, from 3.8 +/- 0.4 to 7.0 +/- 0.8, and from 9.3 +/- 0.7 to 15.5 +/- 1.1 mM, respectively). However, the pNPPase rate is always increased (as above, from 3.6 +/- 0.6 to 11.2 +/- 1.7, from 4.4 +/- 0.5 to 11.4 +/- 0.9, and from 2.6 +/- 0.6 to 18.6 +/- 3.9 nmol mg-1 min-1, in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+, respectively). ATP inhibits the pNPPase activity in the absence of Ca2+, both in the presence and in the absence of DIDS. Therefore, kinetic evidence indicates that DIDS does more than shift the enzyme to the E2 conformation. We propose that the transition from E2 to E1 is decreased and a new enzyme conformer, denoted E2*, is accumulated in the presence of DIDS.  相似文献   

2.
Relation between red cell anion exchange and water transport   总被引:1,自引:0,他引:1  
A new distilbene compound, 4',4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid (DCMBT), has been synthesized for use in studies of anion and water transport in the human red cell. DCMBT combines features of both the specific stilbene anion transport inhibitor, DIDS, and the mercurial water transport inhibitor, pCMBS. This new compound inhibits anion transport almost completely with a Ki of 15 microM. DCMBT also inhibits water transport by about 15-20% with a Ki of about 8 microM. Treatment of red cells with DIDS inhibits the effect of DCMBT on water transport, suggesting that anion transport and water transport are mediated by the same protein.  相似文献   

3.
The effect of DIDS, a specific inhibitor of anion transport in the erythrocyte membrane, on the ADP-stimulated aggregation of gel-filtered bovine blood platelets was examined. Marked inhibition of aggregation was observed at concentrations of more than 5 x 10(-5)M DIDS. On preincubation with platelets for 30 min, DIDS was more potent and significant inhibition was observed at concentrations of over 2 x 10(-7)M. Since ADP-stimulated aggregation of bovine gel-filtered platelets precedes the release reaction, these results suggest that an anion transport system in the plasma membrane is involved in platelet aggregation.  相似文献   

4.
The mechanisms of anion transport in the rabbit distal colon were investigated in vitro under short-circuit conditions by examining the effects of transport inhibitors (the stilbene derivatives SITS and DIDS) under a variety of conditions. These agents consistently inhibited Jm-sCl: SITS (10(-3) M) reduced both unidirectional chloride fluxes to the same degree and did not alter JnetCl. In contrast, 10(-4) M DIDS had no effect on Js-mCl and had a significant chloride antiabsorptive effect. DIDS had no effect on either tissue cyclic AMP levels or on basal flux of potassium. The effects of SITS and the cyclic AMP-related secretagogue theophylline on Isc were independent. Additionally, there was no significant alteration of intracellular potential difference or apical membrane fractional resistance elicited by SITS during microelectrode impalement of colonic surface epithelial cells. These results suggest a complex mechanism of anion transport in the distal colon, with a component of electrogenic anion absorption inhibited by the stilbenes. The subsequent changes in current, conductance, and chloride fluxes are dependent upon additional, independent anion transport processes. These pharmacologic agents exhibit an antiabsorptive effect, rather than a stimulation of electrogenic chloride secretion.  相似文献   

5.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Experiments were designed to determine whether band 3, the anion transport protein of the red cell membrane, contains a mobile element that acts as a carrier to move the anions across a permeability barrier. The transport site-specific, nonpenetrating irreversible inhibitor 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) was found to be effective only when applied extracellularly. It was used to sequester transport sites on the extracellular side of the membrane in intact cells. The membranes were then coverted into inside-out vesicles. The number of anion transport sites available on the cytoplasmic side of the vesicle membranes was then estimated by measuring the binding of N-(-4-azido-2-nitrophenyl)-2-aminoethyl-sulfonate (NAP-taurine), a photoreactive probe. Pretreatment with DIDS from the extracullular side substantially reduced the binding of NAP-taurine at the cytoplasmic side. Since NAP-taurine does not appear to penetrate into the intravesicular (normally extracellular) space, a transmembrane effect is apparently involved. About 70% of the DIDS-sensitive NAP-taurine binding sites are located in band 3, with the remainder largely in a lower molecular weight (band 4) region. A similar pattern of reduction in NAP-taurine binding is produced by high concentrations of Cl-, but this anion has little or no effect in vesicles from cells pretreated with DIDS. Thus the DIDS-modulated sites seem to be capable of binding either NAP-taurine or Cl. It is suggested that band 3 contains a mobile transport element that can be recruited to the extracellular surface by DIDS, thus becoming unavailable to NAP-taurine at the cytoplasmic face of the membrane. The results are consistent with a model of carrier-mediated transport in which the movement of the transport site is associated with a local conformational change in band 3 protein.  相似文献   

7.
The involvement of anion channels in the mechanism of the acrosome reaction (AR) was investigated. The AR was induced by Ca2+ or by addition of the Ca2+ ionophore A23187. The occurrence of AR was determined by following the release of acrosin from the cells. In order to investigate the role of anion channels in the AR, several anion-channel inhibitors were tested, mainly DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). Other blockers, like SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), furosemide, probenecid and pyridoxal 5-phosphate, were also tested. We found that DIDS binds covalently to sperm plasma membrane in a time- and concentration-dependent manner. Maximal binding occurs after 2 h with 0.3 mM DIDS. DIDS and SITS inhibit AR in a concentration-dependent manner. The IC50 of DIDS and SITS in the presence of A23187 is 0.15 and 0.22 mM, respectively. Tributyltin chloride (TBTC), an Cl-/OH- exchanger, partially overcomes DIDS inhibition of the AR. HCO3- is required for a maximal acrosin release and Ca(2+)-uptake, in the presence or absence of A23187. It is known that HCO3- activates adenylate cyclase and therefore, increases the intracellular level of cAMP. The inhibition of the AR by DIDS decreases from 95 to 50% when (dibutyryl cyclic AMP (dbcAMP) was added, i.e., HCO3- is no longer required while elevating the level of cAMP in an alternative way. Moreover, we show that the stimulatory effect of HCO3- on Ca(2+)-uptake is completely inhibited by DIDS. We conclude that DIDS inhibits AR by blocking anion channels, including those that transport HCO3- into the cell.  相似文献   

8.
Studies of binding of the reversible inhibitor DNDS (for abbreviations, see Nomenclature) and red blood cell membranes revealed 8.6 +/- 0.7 x 10(5) high-affinity binding sites per cell (KD = 0.8 +/- 0.4 muM). Under conditions of "mutual depletion," inhibition studies of anion exchange revealed 8.0 +/- 0.7 x 10(5) DNDS inhibitory sites per cell (KD = 0.87 +/- 0.04 muM). Binding and kinetics studies with DNDS indicate that there are 0.8 -- 0.9 x 10(6) functional anion transport sites per blood cell. The transport of DNDS displayed high temperature and concentration dependencies, chemical specificity, susceptibility to inhibition by DIDS, and differences between egress and ingress properties. Under conditions of no DNDS penetration (e.g., 0 degrees C), inhibition of anion exchange by DNDS showed marked sidedness from the outside inhibitions and were demonstrable at micromolar concentrations, whereas from the inside no inhibition occurred even at millimolar concentrations. The asymmetry of DNDS transport properties and the sidedness of binding and inhibition suggest that anion transport sites have a very low affinity for or are inaccessible to DNDS at the inner membrane face. The site of DNDS permeation, although susceptible to DIDS, is apparently not the site of anion exchange.  相似文献   

9.
Reversible binding of DIDS [4,4'-diisothiocyanato-2,2'-stilbenedisulphonate] to Band 3 protein, the anion exchanger located in erythrocyte plasma membrane, was studied in human erythrocytes. For this purpose, the tritiated form of DIDS ([3H]DIDS) has been synthesized and the filtering technique has been used to follow the kinetics of DIDS binding to the sites on Band 3 protein. The obtained results showed monophasic kinetics both for dissociation and association of the 'DIDS--Band 3' complex at 0 degree C in the presence of 165 mM KCl outside the cell (pH 7.3). A pseudo-first order association rate constant k+1 was determined to be (3.72 +/- 0.42) x 10(5) M-1 s-1, while the dissociation rate constant K-1 was determined to be (9.40 +/- 0.68) x 10(-3) s-1. The dissociation constant KD, calculated from the measured values of k-1 and k+1, was found to be 2.53 x 10(-8) M. The standard thermodynamics parameters characterizing reversible DIDS binding to Band 3 protein at 0 degree C were calculated. The mean values of the activation energies for the association and dissociation steps in the DIDS binding mechanism were determined to be (34 +/- 9) kJ mole-1 and (152 +/- 21) kJ mole-1, respectively. The results provide, for the first time, evidence for the reversibility of DIDS binding to Band 3 protein at 0 degree C. The existence of a stimulatory site is suggested, nearby the transport site on the Band 3 protein. The binding of an anion to this site can facilitate (through electrostatic repulsion interaction between two anions) the transmembrane movement of another anion from the transport site.  相似文献   

10.
Relation between red cell anion exchange and urea transport   总被引:1,自引:0,他引:1  
The new distilbene compound, DCMBT (4,4'-dichloromercuric-2,2,2',2'-bistilbene tetrasulfonic acid) synthesized by Yoon et al. (Biochim. Biophys. Acta 778 (1984) 385-389) was used to study the relation between urea transport and anion exchange in human red cells. DCMBT, which combines properties of both the specific stilbene anion exchange inhibitor, DIDS, and the water and urea transport inhibitor, pCMBS, had previously been shown to inhibit anion transport almost completely and water transport partially. We now report that DCMBT also inhibits urea transport almost completely and that covalent DIDS treatment reverses the inhibition. These observations provide support for the view that a single protein or protein complex modulates the transport of water and urea and the exchange of anions through a common channel.  相似文献   

11.
Abstract The purported blocker of anion transport 4, 4′ di-isothiocyano-2-2′ stilbene disulfonate (DIDS) has been shown to partially inhibit 36Cl? influx, 36CIO?3 influx and 35SO2?4 influx into Pisum salivum L. cv. Feltham First seedlings. This inhibitory effect could be prevented by pretreatment with the respective unlabelled medium. There was no effect of DIDS on 14C methylamine influx. The results are consistent with the hypothesis that the binding of DIDS to the site of anion-carrier interaction is responsible for its observed inhibitory effects on anion fluxes. The fluorescent properties of DIDS upon binding to membrane proteins was exploited in an attempt to examine the major sites of anion pumping in whole roots. The results show clearly that in the presence of DIDS the epidermal layers became brightly fluorescent, while cortical layers did not fiuoresce. Lycopersicum esculentum cells taken from locular fluid were plasmolysed using sucrose solution, and the patterns of fluorescence in the presence of DIDS showed in an unambiguous way that the fluorescence is associated with cell membranes. The potential usefulness of this technique to probe sites of anion transport in whole plants and tissues is discussed.  相似文献   

12.
Triton X-100 extracts of membrane proteins from ghosts of normal and pronase treated cells enhance the anion permeability of lecithin vesicles. With proteins from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate), a specific inhibitor of anion transport, the anion permeability is not enhanced. On the basis that the Triton X-100 extracts are considerably enriched in a protein component of 95,000 molecular weight (or a 65,000 molecular weight segment in the case of pronase treated cells), and that DIDS is bound almost exclusively to the same proteins, it is suggested that the pronase resistant, 65,000 molecular weight segment of the 95,000 molecular weight protein is directly involved in anion transport.  相似文献   

13.
4,4'-Diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid (H2DIDS) known as an irreversible inhibitor of the anion transport in red blood cells (Cabantchik, Z.I. and Rothstein, A. (1972) J. Membrane Biol. 10, 311-330) blocks also the uptake of bile acids and of some foreign substrates in isolated hepatocytes (Petzinger, E. and Frimmer, M. (1980) Arch. Toxicol. 44, 127-135). [3H]H2DIDS was used for labeling of membrane proteins probably involved in anion transport of rat liver cells. The membrane proteins modified in vitro by [3H]H2DIDS were compared with those labeled by brominated taurodehydrocholic acid. The latter is one of a series of suitable taurocholate derivatives, all able to bind to defined membrane proteins of hepatocytes and also known to block the uptake of bile acids as well as of phallotoxins and of cholecystographic agents (Ziegler, K., Frimmer, M., M?ller, W. and Fasold, H. (1982) Naunyn-Schmiedeberg's Arch. Pharmacol. 319, 254-261). The radiolabeled proteins were compared after SDS-electrophoresis with and without reducing agent present, solubilization by detergents, two-dimensional electrophoresis and after separation of integral and peripheral proteins. Our results suggest that the anion transport system of liver cells cannot distinguish between bile acids and the anionic stilbene derivative (DIDS). The labeling pattern for both kinds of affinity labels was very similar. Various combinations of separation techniques gave evidence that the radiolabeled membrane proteins are not subunits of a single native channel protein.  相似文献   

14.
The main electric organ of Electrophorus electricus is particularly rich in thiamine triphosphate (TTP). Membrane fractions prepared from this tissue contain a thiamine triphosphatase that is strongly activated by anions and irreversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an anion transport inhibitor. Kinetic parameters of the enzyme are markedly affected by the conditions of enzyme preparation: In crude membranes, the apparent Km is 1.8 mM and the pH optimum is 6.8, but trypsin treatment of these membranes or their purification on a sucrose gradient decreases both the apparent Km (to 0.2 mM) and the pH optimum (to 5.0). Anions such as NO3- (250 mM) have the opposite effect, i.e., even in purified membranes, the pH optimum is now 7.8 and the Km is 1.1 mM; at pH 7.8, NO3- increases the Vmax 24-fold. TTP protects against inhibition by DIDS, and the KD for TTP could be estimated to be 0.25 mM, a value close to the apparent Km measured in the same purified membrane preparation. Thiamine pyrophosphate (0.1 mM) did not protect against DIDS inhibition. At lower (10(-5)-10(-6) M) substrate concentrations, Lineweaver-Burk plots of thiamine triphosphatase activity markedly deviate from linearity, with the curve being concave downward. This suggests either anticooperative binding or the existence of binding sites with different affinities for TTP. The latter possibility is supported by binding data obtained using [gamma-32P]TTP. Our data suggest the existence of a high-affinity binding site (KD of approximately 0.5 microM) for the Mg-TTP complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Band 3 of the human erythrocyte is involved in anion transport and binding of the cytoskeleton to the membrane bilayer. Human erythrocytes were treated to incorporate varying concentrations of DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid) a non-penetrating, irreversible inhibitor of anion transport, and both functions of Band 3 were analyzed. The rate of efflux of 35SO4. was measured and the binding of cytoskeletal components to the membrane was evaluated by extracting the membranes with 0.1 n NaOH and analyzing for the peptides remaining with the membrane. It was found that 0.1 n NaOH extracts all the extrinsic proteins from membranes of untreated cells, while, in the case of the membranes from cells treated with DIDS, a portion of the cytoskeletal components, spectrin (Bands 1 and 2) and Band 2.1 (ankyrin, syndein) remain with the membrane. The amount of these cytoskeletal components remaining with the membrane depends on the concentrations of DIDS incorporated. The effect of DIDS on the extractability of the spectrin-Band 2.1 complex correlates well with DIDS inhibition of anion transport (r = 0.91). At DIDS concentrations which completely inhibit anion transport, about 10% of total spectrin-Band 2.1 complex remains unextracted. Another anion-transport inhibitor, pyridoxal phosphate, has no effect on binding of the cytoskeleton to the membrane. On the other hand, digestion of DIDS-pretreated intact erythrocytes with Pronase, chymotrypsin, or trypsin releases the tight binding of Band 3 to cytoskeleton on the inside of the membrane. Since trypsin does not hydrolyze Band 3 the data suggest that a second membrane protein which is trypsin sensitive may be involved with Band 3 in cytoskeletal binding.  相似文献   

16.
Effects of bicarbonate on lithium transport in human red cells   总被引:12,自引:9,他引:3       下载免费PDF全文
Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis.  相似文献   

17.
Maltosylisothiocyanate (MITC), synthesized as an affinity label for the hexose carrier, has been reported to label a Band 3 or Mr = 100,000 protein in human erythrocytes, in contradistinction to many studies showing the carrier as a Band 4.5 or Mr = 45,000-66,000 protein on gel electrophoresis. In this work the possibility that MITC interacts with the Band 3 anion transporter was studied. In intact human erythrocytes, MITC labeling was largely confined to Band 3 and was decreased by several competitive inhibitors of hexose transport. However, MITC also appeared to react with the anion transport protein, since MITC labeling of Band 3 was irreversibly decreased by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and since MITC also irreversibly inhibited both tritiated dihydro-DIDS labeling of Band 3 and sulfate uptake in intact cells. Although 20 microM DIDS had little effect on hexose transport, the labeling of erythrocyte Band 3 by the dihydro analog was significantly diminished by competitive inhibitors of hexose transport. These data suggest that MITC labels in part the anion transporter as well as other DIDS-reactive sites on Band 3 which appear to be sensitive to competitive inhibitors of hexose transport.  相似文献   

18.
4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion transport inhibitor and choleretic organic anion, was used to study the relationship between putative DIDS-sensitive K channels and exocrine secretion in the isolated and bile duct cannulated perfused rat liver. Bile flow, DIDS excretion, and effluent perfusate K+ content were measured. DIDS (125 microM) caused a doubling in bile generation concomitant with its appearance in bile, confirming earlier reports. Furthermore, DIDS induced a transient increase in perfusate K+ concentration that peaked prior to the biliary parameters and, after 10 min, reversed to net uptake that fully compensated for the initial release. The K channel blocker Ba2+ (1 mM) strongly inhibited the release phase along with the accompanying choleresis and DIDS excretion. Ouabain (13.5 microM) alone was choleretic and hyperkalemic and, when applied in combination with DIDS, depressed DIDS excretion, choleresis, and DIDS-sensitive K+ uptake. To obtain further evidence for the presence of DIDS-sensitive K channels K+ flux was measured under the influence of different gradients of the cation. Perfusate K+ at 26 and 80 mM changed the DIDS-activated K+ flux from a transient outward to a sustained inward flux, and both DIDS excretion and bile flow decreased. Mean net K+ flux over 20 min DIDS perfusion changed from -1.3 +/-1.1 micromol/g with 5.9 mM K+ to -1304 +/- 55 micromol/g with 80 mM K+ in the perfusate. K+ efflux was fully and reversibly blocked by Ba2+ and influx was ouabain-insensitive, suggesting that the DIDS-activated K+ flux was channel mediated. The results show that a significant fraction of DIDS-induced bile generation is associated with K+ release that may be mediated by Ba(2+)-sensitive K channels, possibly of the inward rectifying type.  相似文献   

19.
Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase   总被引:1,自引:0,他引:1  
We have recently demonstrated that voltage dependent anion selective channel~1 (porin, isoform 1) can function as a transplasma membrane NADH:ferricyanide-reductase. However, both the specific redox characteristics and the mechanism of electron transport in this enzyme presently remain unclear. Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro. Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate. However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer. We propose a model on how electron transport may occur in VDAC1.  相似文献   

20.
The conductive (net) anion permeability of human red blood cells was determined from net KCl or K2SO4 effluxes into low K+ media at high valinomycin concentrations, conditions under which the salt efflux is limited primarily by the net anion permeability. Disulfonic stilbenes, inhibitors of anion exchange, also inhibited KCl or K2SO4 efflux under these conditions, but were less effective at lower valinomycin concentrations where K+ permeability is the primary limiting factor. Various concentrations of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) had similar inhibitory effects on net and exchange sulfate fluxes, both of which were almost completely DIDS sensitive. In the case of Cl-, a high correlation was also found between inhibition of net and exchange fluxes, but in this case about 35% of the net flux was insensitive to DIDS. The net and exchange transport processes differed strikingly in their anion selectivity. Net chloride permeability was only four times as high as net sulfate permeability, whereas chloride exchange is over 10,000 times faster than sulfate exchange. Net OH-permeability, determined by an analogous method, was over four orders of magnitude larger than that of Cl-, but was also sensitive to DIDS. These data and others are discussed in terms of the possibility that a common element may be involved in both net and exchange anion transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号