首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thylakoid DeltapH-dependent pathway transports folded proteins with twin arginine-containing signal peptides. Identified components of the machinery include cpTatC, Hcf106, and Tha4. The reaction occurs in two steps: precursor binding to the machinery, and transport across the membrane. Here, we show that a cpTatC-Hcf106 complex serves as receptor for specific binding of twin arginine-containing precursors. Antibodies to either Hcf106 or cpTatC, but not Tha4, inhibited precursor binding. Blue native gel electrophoresis and coimmunoprecipitation of digitonin-solubilized thylakoids showed that Hcf106 and cpTatC are members of an approximately 700-kD complex that lacks Tha4. Thylakoid-bound precursor proteins were also associated with an approximately 700-kD complex and were coimmunoprecipitated with antibodies to cpTatC or Hcf106. Chemical cross-linking revealed that precursors make direct contact with cpTatC and Hcf106 and confirmed that Tha4 is not associated with precursor, cpTatC, or Hcf106 in the membrane. Precursor binding to the cpTatC-Hcf106 complex required both the twin arginine and the hydrophobic core of the signal peptide. Precursors remained bound to the complex when Tha4 was sequestered by antibody, even in the presence of DeltapH. These results indicate that precursor binding to the cpTatC-Hcf106 complex constitutes the recognition event for this pathway and that subsequent participation by Tha4 leads to translocation.  相似文献   

2.
In bacteria and chloroplasts, the Tat (twin arginine translocation) system is capable of translocating folded passenger proteins across the cytoplasmic and thylakoidal membranes, respectively. Transport depends on signal peptides that are characterized by a twin pair of arginine residues. The signal peptides are generally removed after transport by specific processing peptidases, namely the leader peptidase and the thylakoidal processing peptidase. To gain insight into the prerequisites for such signal peptide removal, we mutagenized the vicinity of thylakoidal processing peptidase cleavage sites in several thylakoidal Tat substrates. Analysis of these mutants in thylakoid transport experiments showed that the amino acid composition of both the C-terminal segment of the signal peptide and the N-terminal part of the mature protein plays an important role in the maturation process. Efficient removal of the signal peptide requires the presence of charged or polar residues within at least one of those regions, whereas increased hydrophobicity impairs the process. The relative extent of this effect varies to some degree depending on the nature of the precursor protein. Unprocessed transport intermediates with fully translocated passenger proteins are found in membrane complexes of high molecular mass, which presumably represent Tat complexes, as well as free in the lipid bilayer. This seems to indicate that the Tat substrates can be laterally released from the complexes prior to processing and that membrane transport and terminal processing of Tat substrates are independent processes.  相似文献   

3.
The Delta pH pathway is one of two systems for protein transport to the thylakoid lumen. It is a novel transport system that requires only the thylakoidal DeltapH to power translocation. Several substrates of the Delta pH pathway, including the intermediate precursor form of OE17 (iOE17) and the truncated precursor form of OE17 (tOE17), were shown to bind to the membrane in the absence of the DeltapH and be transported into the lumen when the DeltapH was restored. Binding occurred without energy or soluble factors, and efficient transport from the bound state ( approximately 80-90%) required only the DeltapH. Binding is due to protein-protein interactions because protease pretreatment of thylakoids destroyed their binding capability. Precursors are bound to a specific site on the Delta pH pathway because binding was competed by saturating amounts of Delta pH pathway precursor proteins, but not by a Sec pathway precursor protein. These results suggested that precursor tOE17 binds to components of the Delta pathway translocation machinery. Hcf106 and Tha4 are two components of the Delta pH pathway machinery. Antibodies to Hcf106 or Tha4, when prebound to thylakoids, specifically inhibited precursor transport on the Delta pH pathway. However, only Hcf106 antibodies reduced the level of precursor binding. These results suggest that Hcf106 functions in early steps of the transport process.  相似文献   

4.
The thylakoid twin arginine protein translocation (Tat) system operates by a cyclical mechanism in which precursors bind to a cpTatC-Hcf106 receptor complex, which then recruits Tha4 to form the translocase. After translocation, the translocase disassembles. Here, we fine-mapped initial interactions between precursors and the components of the receptor complex. Precursors with (Tmd)Phe substitutions in the signal peptide and early mature domain were bound to thylakoids and photo-cross-linked to components. cpTatC and Hcf106 were found to interact with different regions of the signal peptide. cpTatC cross-linked strongly to residues in the immediate vicinity of the twin arginine motif. Hcf106 cross-linked less strongly to residues in the hydrophobic core and the early mature domain. To determine whether precursors must leave their initial sites of interaction during translocation, cross-linked precursors were subjected to protein transport conditions. tOE17 cross-linked to cpTatC was efficiently translocated, indicating that the mature domain of the precursor can be translocated while the signal peptide remains anchored to the receptor complex.  相似文献   

5.
The recently described Tat protein translocation system in Escherichia coli recognizes its protein substrates by the consensus twin arginine (SRRXFLK) motif in the signal peptide. The signal sequence of E. coli pre-pro-penicillin amidase bears two arginine residues separated by one aspargine and does not resemble the Tat-targeting motif but can nevertheless target the precursor to the Tat pathway. Mutational studies have shown that the hydrophobic core region acts in synergism with the positive charged N-terminal part of the signal peptide as a Tat recognition signal and contributes to the efficient Tat targeting of the pre-pro-penicillin amidase.  相似文献   

6.
Tat (twin arginine translocation) systems transport folded proteins across the thylakoid membrane of chloroplasts and the plasma membrane of most bacteria. Tat precursors are targeted by hydrophobic cleavable signal peptides with twin arginine (RR) motifs. Bacterial precursors possess an extended consensus, (S/T)RRXFLK, of which the two arginines and the phenylalanine are essential for efficient transport. Thylakoid Tat precursors possess twin arginines but lack the consensus phenylalanine. Here, we have characterized two stages of precursor binding to the thylakoid Tat signal peptide receptor, the 700-kDa cpTatC-Hcf106 complex. The OE17 precursor tOE17 binds to the receptor by RR-dependant electrostatic interactions and partially dissociates during blue native gel electrophoresis. In addition, the signal peptide of thylakoid-bound tOE17 is highly exposed to the membrane surface, as judged by accessibility to factor Xa of cleavage sites engineered into signal peptide flanking regions. By contrast, tOE17 containing a consensus phenylalanine in place of Val(-20) (V - 20F) binds the receptor more strongly and is completely stable during blue native gel electrophoresis. Thylakoid bound V - 20F is also completely protected from factor Xa at the identical sites. This suggests that the signal peptide is buried deeply in the cpTatC-Hcf106 binding site. We further provide evidence that the proton gradient, which is required for translocation, induces a tighter interaction between tOE17 and the cpTat machinery, similar to that exhibited by V - 20F. This implies that translocation involves a very intimate association of the signal peptide with the receptor complex binding site.  相似文献   

7.
The bacterial twin arginine translocation (Tat) pathway translocates across the cytoplasmic membrane folded proteins which, in most cases, contain a tightly bound cofactor. Specific amino-terminal signal peptides that exhibit a conserved amino acid consensus motif, S/T-R-R-X-F-L-K, direct these proteins to the Tat translocon. The glucose-fructose oxidoreductase (GFOR) of Zymomonas mobilis is a periplasmic enzyme with tightly bound NADP as a cofactor. It is synthesized as a cytoplasmic precursor with an amino-terminal signal peptide that shows all of the characteristics of a typical twin arginine signal peptide. However, GFOR is not exported to the periplasm when expressed in the heterologous host Escherichia coli, and enzymatically active pre-GFOR is found in the cytoplasm. A precise replacement of the pre-GFOR signal peptide by an authentic E. coli Tat signal peptide, which is derived from pre-trimethylamine N-oxide (TMAO) reductase (TorA), allowed export of GFOR, together with its bound cofactor, to the E. coli periplasm. This export was inhibited by carbonyl cyanide m-chlorophenylhydrazone, but not by sodium azide, and was blocked in E. coli tatC and tatAE mutant strains, showing that membrane translocation of the TorA-GFOR fusion protein occurred via the Tat pathway and not via the Sec pathway. Furthermore, tight cofactor binding (and therefore correct folding) was found to be a prerequisite for proper translocation of the fusion protein. These results strongly suggest that Tat signal peptides are not universally recognized by different Tat translocases, implying that the signal peptides of Tat-dependent precursor proteins are optimally adapted only to their cognate export apparatus. Such a situation is in marked contrast to the situation that is known to exist for Sec-dependent protein translocation.  相似文献   

8.
The Rieske Fe/S protein, a nuclear-encoded subunit of the cytochrome b(6)/f complex in chloroplasts, is retarded in the stromal space after import into the chloroplast and only slowly translocated further into the thylakoid membrane system. As shown by the sensitivity to nigericin and to specific competitor proteins, thylakoid transport takes place by the DeltapH-dependent TAT pathway. The Rieske protein is an untypical TAT substrate, however. It is only the second integral membrane protein shown to utilize this pathway, and it is the first authentic substrate without a cleavable signal peptide. Transport is instead mediated by the NH(2)-terminal membrane anchor, which lacks, however, the twin-arginine motif indicative of DeltapH/TAT-dependent transport signals. Furthermore, transport is affected by sodium azide as well as by competitor proteins for the Sec pathway in chloroplasts, demonstrating for the first time some cross-talk of the two pathways. This might take place in the stroma where the Rieske protein accumulates after import in several complexes of high molecular mass, among which the cpn60 complex is the most prominent. These untypical features suggest that the Rieske protein represents an intermediate or early state in the evolution of the thylakoidal protein transport pathways.  相似文献   

9.
Targeting of proteins to and translocation across the membranes is a fundamental biological process in all organisms. In bacteria, the twin arginine translocation (Tat) system can transport folded proteins. Here, we demonstrate in vivo that the high potential iron-sulfur protein (HiPIP) from Allochromatium vinosum is translocated into the periplasmic space by the Tat system of Escherichia coli. In vitro, reconstituted HiPIP precursor (preHoloHiPIP) was targeted to inverted membrane vesicles from E. coli by a process requiring ATP when the Tat substrate was properly folded. During membrane targeting, the protein retained its cofactor, indicating that it was targeted in a folded state. Membrane targeting did not require a twin arginine motif and known Tat system components. On the basis of these findings, we propose that a pathway exists for the insertion of folded cofactor-containing proteins such as HiPIP into the bacterial cytoplasmic membrane.  相似文献   

10.
The thylakoid DeltapH-dependent/Tat pathway is a novel system with the remarkable ability to transport tightly folded precursor proteins using a transmembrane DeltapH as the sole energy source. Three known components of the transport machinery exist in two distinct subcomplexes. A cpTatC-Hcf106 complex serves as precursor receptor and a Tha4 complex is required after precursor recognition. Here we report that Tha4 assembles with cpTatC-Hcf106 during the translocation step. Interactions among components were examined by chemical cross-linking of intact thylakoids followed by immunoprecipitation and immunoblotting. cpTatC and Hcf106 were consistently associated under all conditions tested. In contrast, Tha4 was only associated with cpTatC and Hcf106 in the presence of a functional precursor and the DeltapH. Interestingly, a synthetic signal peptide could replace intact precursor in triggering assembly. The association of all three components was transient and dissipated upon the completion of protein translocation. Such an assembly-disassembly cycle could explain how the DeltapH/Tat system can assemble translocases to accommodate folded proteins of varied size. It also explains in part how the system can exist in the membrane without compromising its ion and proton permeability barrier.  相似文献   

11.
In vivo dissection of the Tat translocation pathway in Escherichia coli   总被引:4,自引:0,他引:4  
The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the DeltatatD and DeltatatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of DeltatatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.  相似文献   

12.
The twin arginine (Tat) secretion pathway allows the translocation of folded proteins across the cytoplasmic membrane of bacteria. Tat-specific signal peptides contain a characteristic amino acid motif ((S/T)RRXFLK) including two highly conserved consecutive arginine residues that are thought to be involved in the recognition of the signal peptides by the Tat translocase. Here, we have analyzed the specificity of Tat signal peptide recognition by using a genetic approach. Replacement of the two arginine residues in a Tat-specific precursor protein by lysine-glutamine resulted in an export-defective mutant precursor that was no longer accepted by the wild-type translocase. Selection for restored export allowed for the isolation of Tat translocases possessing single mutations in either the amino-terminal domain of TatB or the first cytosolic domain of TatC. The mutant Tat translocases still efficiently accepted the unaltered precursor protein, indicating that the substrate specificity of the translocases was not strictly changed; rather, the translocases showed an increased tolerance toward variations of the amino acids occupying the positions of the twin arginine residues in the consensus motif of a Tat signal peptide.  相似文献   

13.
The Tat (twin arginine translocation) systems of thylakoids and bacteria transport fully folded protein substrates without breaching the permeability barrier of the membrane. Two components of the thylakoid system, cpTatC and Hcf106, compose a precursor-bound receptor complex. The third component, Tha4, assembles with the precursor-bound receptor complex for the translocation step and is thought to compose at least part of the protein-conducting channel. Here, we used two different cross-linking approaches to explore the organization of Tha4 in the translocase. These cross-linking techniques showed that transition to an active protein transport state resulted in an alignment of the Tha4 amphipathic helix and C-terminal tail domains to form Tha4 oligomers. Oligomerization required functional Tha4, a twin arginine signal peptide, and an active cpTatC-Hcf106 receptor complex. The spectrum of oligomers obtained was independent of the mature folded domain of the precursor. We propose a trapdoor mechanism for translocation whereby aligned oligomers of Tha4 amphipathic helices fold into the membrane to allow formfitting passage of precursor proteins.  相似文献   

14.
The delta pH-driven and Sec-related thylakoidal protein translocases recognise distinct types of thylakoid transfer signal, yet all transfer signals resemble bacterial signal peptides in structural terms. Comparison of known transfer signals reveals a single concrete difference: signals for the delta pH-dependent system contain a common twin-arginine motif immediately before the hydrophobic region. We show that this motif is critical for the delta pH-driven translocation process; substitution of the arg-arg by gln-gln or even arg-lys totally blocks translocation across the thylakoid membrane, and replacement by lys-arg reduces the rate of translocation by > 100-fold. The targeting information in this type of signal thus differs fundamentally from that of bacterial signal peptides, where the required positive charge can be supplied by any basic amino acid. Insertion of a twin-arg motif into a Sec-dependent substrate does not alter the pathway followed but reduces translocation efficiency, suggesting that the motif may also repel the Sec-type system. Other information must help to specify the choice of translocation mechanism, but this information is unlikely to reside in the hydrophobic region because substitution by a hydrophobic section from an integral membrane protein does not affect the translocation pathway.  相似文献   

15.
Cryptophytes, unicellular algae, evolved by secondary endosymbiosis and contain plastids surrounded by four membranes. In contrast to cyanobacteria and red algae, their phycobiliproteins do not assemble into phycobilisomes and are located within the thylakoid lumen instead of the stroma. We identified two gene families encoding phycoerythrin alpha and light-harvesting complex proteins from an expressed sequence tag library of the cryptophyte Guillardia theta. The proteins bear a bipartite topogenic signal responsible for the transport of nuclear encoded proteins via the ER into the plastid. Analysis of the phycoerythrin alpha sequences revealed that more than half of them carry an additional, third topogenic signal comprising a twin arginine motif, which is indicative of Tat (twin arginine transport)-specific targeting signals. We performed import studies with several derivatives of one member using a diatom transformation system, as well as intact chloroplasts and thylakoid vesicles isolated from pea. We demonstrated the different targeting properties of each individual part of the tripartite leader and show that phycoerythrin alpha is transported across the thylakoid membrane into the thylakoid lumen and protease-protected. Furthermore, we showed that thylakoid transport of phycoerythrin alpha takes place by the Tat pathway even if the 36 amino acid long bipartite topogenic signal precedes the actual twin arginine signal. This is the first experimental evidence of a protein being targeted across five biological membranes.  相似文献   

16.
The twin arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates translocation of essentially folded proteins across the cytoplasmic membrane. The detailed understanding of the mechanism of protein targeting to the Tat pathway has been hampered by the lack of screening or selection systems suitable for genetic analysis. We report here the development of a highly quantitative protein reporter for genetic analysis of Tat-specific export. Specifically, export via the Tat pathway rescues green fluorescent protein (GFP) fused to an SsrA peptide from degradation by the cytoplasmic proteolytic ClpXP machinery. As a result, cellular fluorescence is determined by the amount of GFP in the periplasmic space. We used the GFP-SsrA reporter to isolate gain-of-function mutants of a Tat-specific leader peptide and for the genetic analysis of the "invariant" signature RR dipeptide motif. Flow cytometric screening of trimethylamine N-oxide reductase (TorA) leader peptide libraries resulted in isolation of six gain-of function mutants that conferred significantly higher steady-state levels of export relative to the wild-type TorA leader. All the gain-of-function mutations occurred within or near the (S/T)RRXFLK consensus motif, highlighting the significance of this region in interactions with the Tat export machinery. Randomization of the consensus RR dipeptide in the TorA leader revealed that a basic side chain (R/K) is required at the first position whereas the second position can also accept Gln and Asn in addition to basic amino acids. This result indicates that twin arginine translocation does not require the presence of an arginine dipeptide within the conserved sequence motif.  相似文献   

17.
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.  相似文献   

18.
We describe the identification of two Escherichia coli genes required for the export of cofactor-containing periplasmic proteins, synthesized with signal peptides containing a twin arginine motif. Both gene products are homologous to the maize HCF106 protein required for the translocation of a subset of lumenal proteins across the thylakoid membrane. Disruption of either gene affects the export of a range of such proteins, and a complete block is observed when both genes are inactivated. The Sec protein export pathway was unaffected, indicating the involvement of the gene products in a novel export system. The accumulation of active cofactor-containing proteins in the cytoplasm of the mutant strains suggests a role for the gene products in the translocation of folded proteins. One of the two HCF106 homologues is encoded by the first gene of a four cistron operon, tatABCD, and the second by an unlinked gene, tatE. A mutation previously assigned to the hcf106 homologue encoded at the tatABCD locus, mttA, lies instead in the tatB gene.  相似文献   

19.
In Escherichia coli a subset of periplasmic proteins is exported through the Tat pathway to which substrates are directed by an NH(2)-terminal signal peptide containing a consensus SRRXFLK "twin arginine" motif. The importance of the individual amino acids of the consensus motif for in vivo Tat transport has been assessed by site-directed mutagenesis of the signal peptide of the Tat substrate pre-SufI. Although the invariant arginine residues are crucial for efficient export, we find that slow transport of SufI is still possible if a single arginine is conservatively substituted by a lysine residue. Thus, in at least one signal peptide context there is no absolute dependence of Tat transport on the arginine pair. The consensus phenylalanine residue was found to be a critical determinant for efficient export but could be functionally substituted by leucine, another amino acid with a highly hydrophobic side chain. Unexpectedly, the consensus lysine residue was found to retard Tat transport. These observations and others suggest that the sequence conservation of the Tat consensus motif is a reflection of the functional importance of the consensus residues. Tat signal peptides characteristically have positively charged carboxyl-terminal regions. However, changing the sign of this charge does not affect export of SufI.  相似文献   

20.
Ralstonia eutropha (formerly Alcaligenes eutrophus) TF93 is pleiotropically affected in the translocation of redox enzymes synthesized with an N-terminal signal peptide bearing a twin arginine (S/T-R-R-X-F-L-K) motif. Immunoblot analyses showed that the catalytic subunits of the membrane-bound [NiFe] hydrogenase (MBH) and the molybdenum cofactor-binding periplasmic nitrate reductase (Nap) are mislocalized to the cytoplasm and to the inner membrane, respectively. Moreover, physiological studies showed that the copper-containing nitrous oxide reductase (NosZ) was also not translocated to the periplasm in strain TF93. The cellular localization of enzymes exported by the general secretion system was unaffected. The translocation-arrested MBH and Nap proteins were enzymatically active, suggesting that twin-arginine signal peptide-dependent redox enzymes may have their cofactors inserted prior to transmembrane export. The periplasmic destination of MBH, Nap, and NosZ was restored by heterologous expression of Azotobacter chroococcum tatA mobilized into TF93. tatA encodes a bacterial Hcf106-like protein, a component of a novel protein transport system that has been characterized in thylakoids and shown to translocate folded proteins across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号