首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmitoylated proteins have been implicated in several disease states including Huntington's, cardiovascular, T-cell mediated immune diseases, and cancer. To proceed with drug discovery efforts in this area, it is necessary to: identify the target enzymes, establish efficient assays for palmitoylation, and conduct high-throughput screening to identify inhibitors. The primary objectives of this review are to examine the types of assays used to study protein palmitoylation and to discuss the known inhibitors of palmitoylation. Six main palmitoylation assays are currently in use. Four assays, radiolabeled palmitate incorporation, fatty acyl exchange chemistry, MALDI-TOF MS and azido-fatty acid labeling are useful in the identification of palmitoylated proteins and palmitoyl acyltransferase (PAT) enzymes. Two other methods, the in vitro palmitoylation (IVP) assay and a cell-based peptide palmitoylation assay, are useful in the identification of PAT enzymes and are more amenable to screening for inhibitors of palmitoylation. To date, two general types of palmitoylation inhibitors have been identified. Lipid-based palmitoylation inhibitors broadly inhibit the palmitoylation of proteins; however, the mechanism of action of these compounds is unknown, and each also has effects on fatty acid biosynthesis. Conversely, several non-lipid palmitoylation inhibitors have been shown to selectively inhibit the palmitoylation of different PAT recognition motifs. The selective nature of these compounds suggests that they may act as protein substrate competitors, and may produce fewer non-specific effects. Therefore, these molecules may serve as lead compounds for the further development of selective inhibitors of palmitoylation, which may lead to new therapeutics for cancer and other diseases.  相似文献   

2.
Palmitoylation of Sonic Hedgehog (Shh) is critical for effective long- and short-range signaling. Genetic screens uncovered a potential palmitoylacyltransferase (PAT) for Shh, Hhat, but the molecular mechanism of Shh palmitoylation remains unclear. Here, we have developed and exploited an in vitro Shh palmitoylation assay to purify Hhat to homogeneity. We provide direct biochemical evidence that Hhat is a PAT with specificity for attaching palmitate via amide linkage to the N-terminal cysteine of Shh. Other palmitoylated proteins (e.g. PSD95 and Wnt) are not substrates for Hhat, and Porcupine, a putative Wnt PAT, does not palmitoylate Shh. Neither autocleavage nor cholesterol modification is required for Shh palmitoylation. Both the Shh precursor and mature protein are N-palmitoylated by Hhat, and the reaction occurs during passage through the secretory pathway. This study establishes Hhat as a bona fide Shh PAT and serves as a model for understanding how secreted morphogens are modified by distinct PATs.  相似文献   

3.
The acylation of proteins through the addition of palmitate to cysteine residues is a common posttranslational modification for a variety of proteins, but the enzymology of this reversible modification has resisted elucidation. We developed a strategy to purify protein fatty acyltransferase (PAT) activity from rat livers that took advantage of recent knowledge on the cellular location and inhibition of PAT activity. We determined that three different thiolases have PAT activity in the presence of imidazole and therefore started the purification with a plasma membrane fraction to minimize the contamination with these enzymes. After detergent extraction of the plasma membrane fraction, the PAT activity was enriched about 90-fold by sequential chromatography including affinity chromatography to a cerulenin-based inhibitor of palmitoylation. The partially purified PAT activity (1) was lost with treatments to degrade or denature proteins, (2) could acylate tubulin, Galpha(i) and RGS16 and (3) showed a preference for palmitate and to a lesser degree other long-chain fatty acids. This purification procedure is a significant advance over previous efforts at PAT purification and a starting point for a proteomic approach for identification of mammalian PAT.  相似文献   

4.

Background

Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans.

Results

Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms.

Conclusions

This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-841) contains supplementary material, which is available to authorized users.  相似文献   

5.
Palmitoylation is the thioester linkage of the fatty acid, palmitate (C16:0), to cysteine residues on a protein or peptide. This dynamic and reversible post-translational modification increases the hydrophobicity of proteins/peptides, facilitating protein-membrane interactions, protein-protein interactions and intracellular trafficking of proteins. Manipulation of palmitoylation provides a new mechanism for control over protein location and function, which may lead to better understanding of cell signaling disorders, such as cancer. Unfortunately, few methods exist to quantitatively monitor protein or peptide palmitoylation. In this study, a capillary electrophoresis-based assay was developed, using MEKC, to measure palmitoylation of a fluorescently-labeled peptide in vitro. A fluorescently-labeled peptide derived from the growth-associated protein, GAP-43, was palmitoylated in vitro using palmitoyl coenzyme A. Formation of a doubly palmitoylated GAP-peptide product was confirmed by mass spectrometry. The GAP-peptide substrate was separated from the palmitoylated peptide product in less than 7 min by MEKC. The rate of in vitro palmitoylation with respect to reaction time, GAP-peptide concentration, pH, and inhibitor concentration were also examined. This capillary electrophoresis-based assay for monitoring palmitoylation has applications in biochemical studies of acyltransferases and thioesterases as well as in the screening of acyltransferase and thioesterase inhibitors for drug development.  相似文献   

6.
Palmitoylation enhances membrane association and plays a role in the subcellular trafficking and signaling function of proteins. Unlike other forms of protein lipidation, such as prenylation and myristoylation, palmitoylation is reversible and can therefore play a regulatory role. Enzyme activities have recently been described in mammals and yeast that carry out the palmitoylation of protein substrates. Protein acyltransferases (PATs) transfer a palmitoyl moiety derived from palmitoyl-CoA to a free thiol of a substrate protein to create a labile thioester linkage. Biochemical characterization and kinetic analysis of this new family of enzymes requires methods to purify PATs and their substrates, as well as methods to assay PAT activity. We describe a series of methods using yeast and bacterial expression systems to study protein acyltransferases.  相似文献   

7.
Roth AF  Wan J  Bailey AO  Sun B  Kuchar JA  Green WN  Phinney BS  Yates JR  Davis NG 《Cell》2006,125(5):1003-1013
Protein palmitoylation is a reversible lipid modification that regulates membrane tethering for key proteins in cell signaling, cancer, neuronal transmission, and membrane trafficking. Palmitoylation has proven to be a difficult study: Specifying consensuses for predicting palmitoylation remain unavailable, and first-example palmitoylation enzymes--i.e., protein acyltransferases (PATs)--were identified only recently. Here, we use a new proteomic methodology that purifies and identifies palmitoylated proteins to characterize the palmitoyl proteome of the yeast Saccharomyces cerevisiae. Thirty-five new palmitoyl proteins are identified, including many SNARE proteins and amino acid permeases as well as many other participants in cellular signaling and membrane trafficking. Analysis of mutant yeast strains defective for members of the DHHC protein family, a putative PAT family, allows a matching of substrate palmitoyl proteins to modifying PATs and reveals the DHHC family to be a family of diverse PAT specificities responsible for most of the palmitoylation within the cell.  相似文献   

8.
Many important signaling proteins require the posttranslational addition of fatty acid chains for their proper subcellular localization and function. One such modification is the addition of palmitoyl moieties by enzymes known as palmitoyl acyltransferases (PATs). Substrates for PATs include C-terminally farnesylated proteins, such as H- and N-Ras, as well as N-terminally myristoylated proteins, such as many Src-related tyrosine kinases. The molecular and biochemical characterization of PATs has been hindered by difficulties in developing effective methods for the analysis of PAT activity. In this study, we describe the use of cell-permeable, fluorescently labeled lipidated peptides that mimic the PAT recognition domains of farnesylated and myristoylated proteins. These PAT substrate mimetics are accumulated by SKOV3 cells in a saturable and time-dependent manner. Although both peptides are rapidly palmitoylated, the SKOV3 cells have a greater capacity to palmitoylate the myristoylated peptide than the farnesylated peptide. Confocal microscopy indicated that the palmitoylated peptides colocalized with Golgi and plasma membrane markers, whereas the corresponding nonpalmitoylatable peptides accumulated in the Golgi but did not traffic to the plasma membrane. Overall, these studies indicate that the lipidated peptides provide useful cellular probes for quantitative and compartmentalization studies of protein palmitoylation in intact cells.  相似文献   

9.
Protein palmitoylation refers to the posttranslational addition of a 16 carbon fatty acid to the side chain of cysteine, forming a thioester linkage. This acyl modification is readily reversible, providing a potential regulatory mechanism to mediate protein-membrane interactions and subcellular trafficking of proteins. The mechanism that underlies the transfer of palmitate or other long-chain fatty acids to protein was uncovered through genetic screens in yeast. Two related S-palmitoyltransferases were discovered. Erf2 palmitoylates yeast Ras proteins, whereas Akr1 modifies the yeast casein kinase, Yck2. Erf2 and Akr1 share a common sequence referred to as a DHHC (aspartate-histidine-histidine-cysteine) domain. Numerous genes encoding DHHC domain proteins are found in all eukaryotic genome databases. Mounting evidence is consistent with this signature motif playing a direct role in protein acyltransferase (PAT) reactions, although many questions remain. This review presents the genetic and biochemical evidence for the PAT activity of DHHC proteins and discusses the mechanism of protein-mediated palmitoylation.  相似文献   

10.
Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and "integral" membrane binding of PI4KIIα and its association with low buoyant density "raft" domains are critically dependent on palmitoylation of its cysteine-rich (173)CCPCC(177) motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, "integral" membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα (173)CCPCC(177) palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and "integral" membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.  相似文献   

11.
《Molecular membrane biology》2013,30(2-3):123-136
Abstract

Palmitoylation is required for the activities of several cancer-associated proteins, making the palmitoyl acyltransferase (PAT) enzymes that catalyze these reactions potential targets for anticancer therapeutics. In this study, we sought to identify and characterize a human PAT with activity toward N-terminally myristoylated and palmitoylated proteins. NIH/3t3 cells were stably transfected with vectors containing no insert, wild type human DHHC20, or a serine-substituted DHHS20 mutant. Compared with control cells, cells overexpressing wild-type DHHC20 displayed an increase in palmitoylation activity toward a peptide that mimics the N-terminus of myristoylated and palmitoylated proteins, but had no change in activity toward a peptide that mimics the C-terminus of farnesylated and palmitoylated proteins. Cells expressing DHHS20 had no significant change in activity toward either peptide. Overexpression of DHHC20 also caused phenotypic changes consistent with cellular transformation, including colony formation in soft agar, decreased contact inhibition of growth, and increased proliferation under low-serum conditions. Quantitative polymerase chain reaction analyses of human tissues demonstrated that DHHC20 is expressed in a tissue-specific manner, and is overexpressed in several types of human tumors, including ovarian, breast and prostate. Overall, these results demonstrate that DHHC20 is a human N-terminal-myristoyl-directed PAT involved in cellular transformation, that may play a role in cancer.  相似文献   

12.
13.
Posttranslational modifications, including phosphorylation, ubiquitination and lipid modifications, provide proteins with additional functions and regulation beyond genomic information. Palmitoylation is a reversible lipid modification with palmitic acid that plays critical roles in protein trafficking and function. However, the enzymes that mediate palmitoyl acyl transferase (PAT) have been elusive. Recent genetic analysis in yeast revealed that members of cysteine-rich DHHC domain containing proteins (DHHC proteins) mediate palmitoylation. In mammalian genomes, 23 DHHC proteins are predicted raising the possibility of a large family of PAT enzymes. Here, we describe a systematic method to examine which of the DHHC family members is responsible for palmitoylation of a substrate.  相似文献   

14.
To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.  相似文献   

15.
16.
17.
Palmitoylation is a post-translational lipid modification involving the attachment of a 16-carbon saturated fatty acid, palmitate, to cysteine residues of substrate proteins through a labile thioester bond [reviewed in1]. Palmitoylation of a substrate protein increases its hydrophobicity, and typically facilitates its trafficking toward cellular membranes. Recent studies have shown palmitoylation to be one of the most common lipid modifications in neurons1, 2, suggesting that palmitate turnover is an important mechanism by which these cells regulate the targeting and trafficking of proteins. The identification and detection of palmitoylated substrates can therefore better our understanding of protein trafficking in neurons.Detection of protein palmitoylation in the past has been technically hindered due to the lack of a consensus sequence among substrate proteins, and the reliance on metabolic labeling of palmitoyl-proteins with 3H-palmitate, a time-consuming biochemical assay with low sensitivity. Development of the Acyl-Biotin Exchange (ABE) assay enables more rapid and high sensitivity detection of palmitoylated proteins2-4, and is optimal for measuring the dynamic turnover of palmitate on neuronal proteins. The ABE assay is comprised of three biochemical steps (Figure 1): 1) irreversible blockade of unmodified cysteine thiol groups using N-ethylmaliemide (NEM), 2) specific cleavage and unmasking of the palmitoylated cysteine''s thiol group by hydroxylamine (HAM), and 3) selective labeling of the palmitoylated cysteine using a thiol-reactive biotinylation reagent, biotin-BMCC. Purification of the thiol-biotinylated proteins following the ABE steps has differed, depending on the overall goal of the experiment.Here, we describe a method to purify a palmitoylated protein of interest in primary hippocampal neurons by an initial immunoprecipitation (IP) step using an antibody directed against the protein, followed by the ABE assay and western blotting to directly measure palmitoylation levels of that protein, which is termed the IP-ABE assay. Low-density cultures of embryonic rat hippocampal neurons have been widely used to study the localization, function, and trafficking of neuronal proteins, making them ideally suited for studying neuronal protein palmitoylation using the IP-ABE assay. The IP-ABE assay mainly requires standard IP and western blotting reagents, and is only limited by the availability of antibodies against the target substrate. This assay can easily be adapted for the purification and detection of transfected palmitoylated proteins in heterologous cell cultures, primary neuronal cultures derived from various brain tissues of both mouse and rat, and even primary brain tissue itself.  相似文献   

18.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

19.
Post-translational palmitoylation of intracellular proteins is mediated by protein palmitoyltransferases belonging to the DHHC family, which share a common catalytic Asp-His-His-Cys (DHHC) motif. Several members have been implicated in neuronal development, neurotransmission, and synaptic plasticity. We previously observed that mice homozygous for a hypomorphic allele of the ZDHHC5 gene are impaired in context-dependent learning and memory. To identify potentially relevant protein substrates of DHHC5, we performed a quantitative proteomic analysis of stable isotope-labeled neuronal stem cell cultures from forebrains of normal and DHHC5-GT (gene-trapped) mice using the bioorthogonal palmitate analog 17-octadecynoic acid. We identified ~300 17-octadecynoic acid-modified and hydroxylamine-sensitive proteins, of which a subset was decreased in abundance in DHHC5-GT cells. Palmitoylation and oligomerization of one of these proteins (flotillin-2) was abolished in DHHC5-GT neuronal stem cells. In COS-1 cells, overexpression of DHHC5 markedly stimulated the palmitoylation of flotillin-2, strongly suggesting a direct enzyme-substrate relationship. Serendipitously, we found that down-regulation of DHHC5 was triggered within minutes following growth factor withdrawal from normal neural stem cells, a maneuver that is used to induce neural differentiation in culture. The effect was reversible for up to 4 h, and degradation was partially prevented by inhibitors of ubiquitin-mediated proteolysis. These findings suggest that protein palmitoylation can be regulated through changes in DHHC PAT levels in response to differentiation signals.  相似文献   

20.
Palmitoyl protein thioesterase (PPT) 1 is an enzyme involved in deacylation of palmitoylated proteins. A deficiency in PPT1 results in a genetic disease, infantile neuronal ceroid lipofuscinosis, associated with massive death of cortical neurons. The role of PPT1 in neuronal survival and apoptosis was studied in human neuroblastoma (LA-N-5) cells overexpressing PPT1. Overexpression of PPT1 was shown both by the 200-350% increase in depalmitoylating activity over basal level (as determined by an in vitro PPT assay) and by western blot analysis of transiently expressed epitope-tagged PPT1. Overexpressed PPT1 showed the same acidic pH optimum (pH 4.0) as the endogenous enzyme, when assayed with a P0-derived octapeptide substrate, and reduced the growth rate by 30%. LA-N-5 cells underwent apoptosis, as evidenced by increased caspase 3-like activity and increased DNA fragmentation, when challenged with either C2-ceramide or a phosphatidylinositol 3-kinase inhibitor (LY294002). Overexpression of PPT1 inhibited this C2-ceramide- or LY294002-mediated activation of caspase-3 by 50%. There was also a concomitant decrease in DNA fragmentation and cell death. Consistent with increased resistance to apoptosis, we found increased phosphorylation of the antiapoptotic protein Akt (protein kinase B) in PPT1-overexpressing cells. p21Ras is known to be dynamically palmitoylated and depalmitoylated and is involved in both growth and cell death. The C2-ceramide-induced membrane association of p21Ras was reduced by 30-50% in PPT1-overexpressing cells compared with control. PPT overexpression also led to reduced membrane association of another palmitoylated protein, GAP-43, a neuron-specific protein. Our studies suggest that protein palmitoylation could be a physiological regulator of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号