首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

3.
Sukumar N  Xu Y  Gatti DL  Mitra B  Mathews FS 《Biochemistry》2001,40(33):9870-9878
The structure of an active mutant of (S)-mandelate dehydrogenase (MDH-GOX2) from Pseudomonas putida has been determined at 2.15 A resolution. The membrane-associated flavoenzyme (S)-mandelate dehydrogenase (MDH) catalyzes the oxidation of (S)-mandelate to give a flavin hydroquinone intermediate which is subsequently reoxidized by an organic oxidant residing in the membrane. The enzyme was rendered soluble by replacing its 39-residue membrane-binding peptide segment with a corresponding 20-residue segment from its soluble homologue, glycolate oxidase (GOX). Because of their amphipathic nature and peculiar solubilization properties, membrane proteins are notoriously difficult to crystallize, yet represent a large fraction of the proteins encoded by genomes currently being deciphered. Here we present the first report of such a structure in which an internal membrane-binding segment has been replaced, leading to successful crystallization of the fully active enzyme in the absence of detergents. This approach may have general application to other membrane-bound proteins. The overall fold of the molecule is that of a TIM barrel, and it forms a tight tetramer within the crystal lattice that has circular 4-fold symmetry. The structure of MDH-GOX2 reveals how this molecule can interact with a membrane, although it is limited by the absence of a membrane-binding segment. MDH-GOX2 and GOX adopt similar conformations, yet they retain features characteristic of membrane and globular proteins, respectively. MDH-GOX2 has a distinctly electropositive surface capable of interacting with the membrane, while the opposite surface is largely electronegative. GOX shows no such pattern. MDH appears to form a new class of monotopic integral membrane protein that interacts with the membrane through coplanar electrostatic binding surfaces and hydrophobic interactions, thus combining features of both the prostaglandin synthase/squaline-hopine cyclase and the C-2 coagulation factor domain classes of membrane proteins.  相似文献   

4.
5.
Biogas biorefineries have opened up new horizons beyond heat and electricity production in the anaerobic digestion sector. Added-value products such as polyhydroxyalkanoates (PHAs), which are environmentally benign and potential candidates to replace conventional plastics, can be generated from biogas. This work investigated the potential of an innovative two-stage growth-accumulation system for the continuous production of biogas-based polyhydroxybutyrate (PHB) using Methylocystis hirsuta CSC1 as cell factory. The system comprised two turbulent bioreactors in series to enhance methane and oxygen mass transfer: a continuous stirred tank reactor (CSTR) and a bubble column bioreactor (BCB) with internal gas recirculation. The CSTR was devoted to methanotrophic growth under nitrogen balanced growth conditions and the BCB targeted PHB production under nitrogen limiting conditions. Two different operational approaches under different nitrogen loading rates and dilution rates were investigated. A balanced nitrogen loading rate along with a dilution rate (D) of 0.3 day−1 resulted in the most stable operating conditions and a PHB productivity of ~53 g PHB m−3 day−1. However, higher PHB productivities (~127 g PHB m−3 day−1) were achieved using nitrogen excess at a D = 0.2 day−1. Overall, the high PHB contents (up to 48% w/w) obtained in the CSTR under theoretically nutrient balanced conditions and the poor process stability challenged the hypothetical advantages conferred by multistage vs single-stage process configurations for long-term PHB production.  相似文献   

6.
Embryogenic callus was induced from leaf explants of Eleutherococcus sessiliflorus cultured on Murashige and Skoog (MS) basal medium supplemented with 1 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), while no plant growth regulators were needed for embryo maturation. The addition of 1 mg l(-1) 2,4-D was needed to maintain the embryogenic culture by preventing embryo maturation. Optimal embryo germination and plantlet development was achieved on MS medium with 4 mg l(-1) gibberellic acid (GA(3)). Low-strength MS medium (1/2 and 1/3 strength) was more effective than full-strength MS for the production of normal plantlets with well-developed shoots and roots. The plants were successfully transferred to soil. Embryogenic callus was used to establish a suspension culture for subsequent production of somatic embryos in bioreactor. By inoculating 10 g of embryogenic cells (fresh weight) into a 3l balloon type bubble bioreactor (BTBB) containing 2l MS medium without plant growth regulators, 121.8 g mature somatic embryos at different developmental stages were harvested and could be separated by filtration. Cotyledonary somatic embryos were germinated, and these converted into plantlets following transfer to a 3l BTBB containing 2l MS medium with 4 mg l(-1) GA3. HPLC analysis revealed that the total eleutherosides were significantly higher in leaves of field grown plants as compared to different stages of somatic embryo. However, the content of eleutheroside B was highest in germinated embryos. Germinated embryos also had higher contents of eleutheroside E and eleutheroside E1 as compared to other developmental stages. This result indicates that an efficient protocol for the mass production of E. sessiliflorus biomass can be achieved by bioreactor culture of somatic embryos and can be used as a source of medicinal raw materials.  相似文献   

7.
A novel enzymatic process for the production of cyclodextrins from unliquefied starch was developed. Cyclodextrins were produced in an attrition bioreactor in which simultaneous hydrolysis of starch and synthesis of cyclodextrins by cyclodextrin glycosyltransferase (CGTase) occur. The CGTase was obtained from isolated Bacillus sp. BE101, and maximum activity of the enzyme was observed at pH 6.0 and a temperature of 45 degrees C. The effect of milling media size and material on the performance of the attrition bioreactor was investigated, and operational parameters such as agitation speed, volume of milling media, ratio of enzyme to starch, and starch concentration were optimized. The production yield of cyclodextrins from unliquefied corn starch of 15% reached 35% at 24 h under optimized conditions. Energy consumption for the production of cyclodextrins in the attrition bioreactor system was estimated to be about 25% of that required for the liquefaction of starch in the conventional process.  相似文献   

8.
Y Xu  B Mitra 《Biochemistry》1999,38(38):12367-12376
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a member of the flavin mononucleotide-dependent alpha-hydroxy acid oxidase/dehydrogenase family, is a membrane-associated protein, in contrast to the more well-characterized members of this protein family including glycolate oxidase (GOX) from spinach. In a previous study [Mitra, B., et al. (1993) Biochemistry 32, 12959-12967], the membrane association of MDH was correlated to a 53 amino acid segment in the interior of the primary sequence by construction of a chimeric enzyme, MDH-GOX1, in which the membrane-binding segment in MDH was deleted and replaced with the corresponding 34 amino acid segment from the soluble GOX. Though MDH-GOX1 was soluble, it was an inefficient, nonspecific enzyme that involved a different transition state for the catalyzed reaction from that of the wild-type MDH. In the present study, it is shown that the membrane-binding segment in MDH is somewhat shorter, approximately 39 residues long. Partial or total deletion of this segment disrupts membrane localization of MDH. This segment is not important for substrate oxidation activity. A new chimera, MDH-GOX2, was created by replacing this shorter membrane-binding segment from MDH with the corresponding 20 amino acid segment from GOX. The soluble MDH-GOX2 is very similar to the wild-type membrane-bound enzyme in its spectroscopic properties, substrate specificity, catalytic activity, kinetic mechanism, and lack of reactivity toward oxygen. Therefore, it should prove to be a highly useful model for structural studies of MDH.  相似文献   

9.
Dewanti AR  Mitra B 《Biochemistry》2003,42(44):12893-12901
(S)-Mandelate dehydrogenase from Pseudomonas putida is a member of a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids to alpha-ketoacids. The reductive half-reaction consists of the steps involved in substrate oxidation and FMN reduction. In this study, we investigated the mechanism of this half-reaction in detail. At low temperatures, a transient intermediate was formed in the course of the FMN reduction reaction. This intermediate is characteristic of a charge-transfer complex of oxidized FMN and an electron-rich donor and is formed prior to full reduction of the flavin. The intermediate was not due to binding of anionic substrates or inhibitors. It was only observed with efficient substrates that have high k(cat) values. At higher temperatures, it was formed within the dead time of the stopped-flow instrument. The rate of formation of the intermediate was 3-4-fold faster than its rate of disappearance; the former had a larger isotope effect. This suggests that the charge-transfer donor is an electron-rich carbanion/enolate intermediate that is generated by the base-catalyzed abstraction of the substrate alpha-proton. This is consistent with the observation that the intermediate was not observed with the R277K and R277G mutants, which have been shown to destabilize the carbanion intermediate (Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065). Thus, the MDH reaction has two rate-limiting steps of similar activation energies: the formation and breakdown of a distinct intermediate, with the latter step being slightly more rate limiting. We also show that MDH is capable of catalyzing the reverse reaction, the reoxidation of reduced MDH by the product ketoacid, benzoylformate. The transient intermediate was observed during the reverse reaction as well, confirming that it is indeed a true intermediate in the MDH reaction pathway.  相似文献   

10.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(7):1883-1890
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes (S)-mandelate to benzoylformate. In this work, we show that the ethyl and methyl esters of (S)-mandelic acid are substrates for MDH. Although the binding affinity of the neutral esters is 25-50-fold lower relative to the negatively charged (S)-mandelate, they are oxidized with comparable k(cat)s. Substrate analogues in which the carbonyl group on the C-1 carbon is replaced by other electron-withdrawing groups were not substrates. The requirement of a carbonyl group on the C-1 carbon in a substrate suggests that the negative charge developed during the reaction is stabilized by delocalization to the carbonyl oxygen. Arg277, a residue that is important in both binding and transition state stabilization for the activity with (S)-mandelate, is also critical for transition state stabilization for the esters, but not for their binding affinity. We previously showed that the substrate oxidation half-reaction with (S)-mandelate has two rate-limiting steps of similar activation energies and proceeds through the formation of a charge-transfer complex of an electron-rich donor and oxidized FMN [Dewanti, A. R., and Mitra, B. (2003) Biochemistry 42, 12893-12901]. This charge-transfer intermediate was observed with the neutral esters as well. The observation of this electron-rich intermediate for the oxidation of an uncharged substrate to an uncharged product, as well as the critical role of Arg277 in the reaction with the esters, provides further evidence that the MDH reaction mechanism is not a concerted transfer of a hydride ion from the substrate to the FMN, but involves the transient formation of a carbanion/ene(di)olate intermediate.  相似文献   

11.
12.
Continuous culture for the production of ethanol from wood hydrolysate was carried out in an internal membrane-filtration bioreactor. The hydrolysate medium was sterilized at a relatively low temperature of 60 degrees C with the intention of reducing the formation of inhibitory compounds during the sterilization. The maximum ethanol concentration and productivity obtained in this study were 76.9 g/L and 16.9 g/L-h, respectively, which were much higher than those (57.2-67 g/L and 0.3-1.0 g/L-h) obtained in batch cultures using hydrolysate media sterilized at 60 degrees C. The productivity was also found to be much higher than that (6.7 g/L-h) obtained in a continuous cell retention culture using a wood hydrolysate sterilized at 121 degrees C. These results show that the internal membrane-filtration bioreactor in combination with low-temperature sterilization could be very effective for ethanol production from wood hydrolysate.  相似文献   

13.
14.
Actinomycin-D production by a biofilm-forming estuarine isolate viz Streptomyces sp. MS 310 is studied in small-scale shaken cultures, as well as in a 25 L rotating disk bioreactor, (RDBR) which, when operated at a disk rotational speed of 1 revolution/day with 50% disk submergence, mimics the intertidal conditions of the microbe’s niche estuarine habitat-alternating 12 h periods of inundation and exposure. The ideal pH and temperature for antibiotic production are determined (pH 10, 30°C) through a designed experimental study using shaken flasks. Subsequently, operating conditions in the RDBR are investigated employing a 3n experimental design wherein each of two (n = 2) parameters viz. aeration and disk submergence are considered at three levels viz high, medium, and low: 9.0, 6.0, and 3.0 L/min for aeration rate; and 75, 50, and 25% for disk submergence, (while maintaining the rotational speed at 1.0 rev/day). The niche-mimic condition along with maximum permissible aeration is found to be most favorable for antibiotic production — peak antibiotic activity (PAA) and peak activity attainment rate (PAAR) simultaneously attaining their highest values: 40 mm and 2.13 mm/h, respectively. Both PAA and PAAR increase with increasing aeration at all operating conditions examined — particularly, at the niche-mimic condition, a threefold increase in aeration rate (3∼9 L/min) causes PAA to increase by 33%, whereas PAAR increases by 2.5 times, thus pointing to the strong aeration dependence of this actinomycin-D producer. Again, compared to the best values obtained in the 500 mL shaken flask experiments, corresponding RDBR values are 16% higher for PAA and more than 5 times higher for PAAR — strong evidence for employing these novel bioreactors for cultivation of antibiotic-producer marine microbes.  相似文献   

15.
Continuous L(+)-lactic acid production was carried out in an airlift bioreactor with immobilized R. oryzae in polyurethane foam cubes. In a pseudo-steady state, the productivity of lactic acid increased with increasing dilution rate or feeding glucose concentration. A double-layer reaction-diffusion model for the pseudo-steady state process was developed to describe the bioreaction system. Using independently determined model parameters, the model prediction agreed well with the experimental results. Therefore, the model can be employed to understand the fermentation behavior, and for the process design and optimization.  相似文献   

16.
Cyclodextrin glycosyltransferase (CGTase) was found to be severely inhibited by cyclodextrins. In order to increase the conversion yield by reducing product inhibition and reuse the CGTase in the production of cyclodextrins from milled corn starch, an ultrafiltration membrane bioreactor system was employed. In a batch operation with ultrafiltration, the conversion yield was increased 57% compared with that without ultrafiltration. Operating conditions for the continuous production of cyclodextrins in the membrane bioreactor were optimized by taking into consideration the filtration rate and the conversion yield as follows: initial starch concentration, 7% (w/v); starch feeding rate, 240 mg/h; CGTase loading, 350 units/initial gram starch. When cyclodextrins were continuously produced in the membrane bioreactor under optimized conditions, 340 units of CGTase was require to produce 1 g of cyclodextrins for 48 h, while in the case of conventional batch operation, 1 g of cyclodextrins was produced for 24 h by 1410 units of CGTase. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
105 yeast strains from 10 genera and 40 species were evaluated for cell-free production of (R)-phenylacetylcarbinol (PAC), the chiral precursor in the manufacture of the pharmaceuticals ephedrine and pseudoephedrine. Carboligase activity of pyruvate decarboxylase (PDC), forming PAC from benzaldehyde and pyruvate, was found in extracts of 98 strains. PAC was not formed from benzaldehyde and acetaldehyde, an activity of bacterial PDCs from Zymomonas mobilis and Zymobacter palmae. Two interesting groups of candidates were identified in the yeast screening: carboligase activities of Schizosaccharomyces pombe PDCs were very low but showed best resistance to pre-incubation with acetaldehyde and benzaldehyde; and highest carboligase activities combined with medium resistance were found in strains of Candida utilis, C. tropicalis and C. albicans.  相似文献   

18.
Pseudo-two phase partitioning bioreactor (P-TPPB) was newly proposed as an extension of the application of TPPB to bioprocesses in which hydrophilic substrates and/or products are involved. The feasibility of P-TPPB was demonstrated in enzymatic biodiesel production, where methanol completely inhibits the enzymes. Unlike conventional TPPB, the P-TPPB comprises a hydrophobic first phase (soybean oil) and hydrophilic second phase. n-Pentanol was found to be the optimum for the second phase, since P-TPPB containing n-pentanol showed the greatest total biodiesel conversion and highest fatty acid methyl ester content. The enzyme was repeatedly used to produce biodiesel in P-TPPB, while maintaining its activity at over 95 % relative to that of the intact enzyme.  相似文献   

19.
A porphyrin-based photoexcited system has been revealed to be an efficient catalyst for d-limonene biotransformation under mild conditions and using molecular oxygen or/and H2O2 as oxidants. The influence of the oxidant, the wavelength of visible light, and the photoexcitation time on the catalytic system were studied for limonene oxidation with 5,10,15,20-tetraphenylporphyrin (H2TPP) as a catalyst. This porphyrin-catalyzed oxidation of limonene to three main products identified as carvone, an unknown product with a verbenone-like mass spectrum (1), and a (1S,4R)-p-mentha-2,8-diene 1-hydroperoxide (2). The highest conversion yield of these products was achieved at a very high molar ratio of H2TPP to limonene. The dependence of the biotransformation yield on the kind of solvent with different acceptor/donor electron properties was also investigated. Ethyl alcohol proved to be the best among the considered additives used for the reaction. Limonene photooxidation was not significantly dependent on wavelengths of visible light. It was concluded by UV-vis experiments that the reaction proceeds via a free-radical or/and molecular mechanism. Additional evidence for its radical nature was obtained from reactivity investigations. Maximal yield of carvone was obtained in the medium containing 90% of the substrate, within the period of 18 to 36 h of exposition to sunlight.  相似文献   

20.
Feasibility of elemental sulfur reduction by Desulfovibrio desulfuricans in anaerobic conditions in a stirred reactor was studied. Hydrogen was used as energy source, whereas the carbonated species were bicarbonate and yeast extract. Attention was paid to reactor engineering aspects, biofilm formation on the sulfur surface, hydrogen sulfide formation rate and kinetics limitations of the sulfur reduction. D. desulfuricans formed stable biofilms on the sulfur surface. It was found that active sulfur surface availability limits the reaction rate. The reaction rate was first order with respect to sulfur and hydrogen velocity had no effect in the reaction rate for the range 8.2 x 10(-2) to 4.1 x 10(-1) Nm(3) m(-2) min(-1). At a superficial gas velocity (u(G)) = 3.1 x 10(-2) Nm(3) m(-2) min(-1), H(2)S(g) production rate decreased due to a deficient H(2)S stripping. A maximum H(2)S(g) production rate of 2.1 g H(2)S L(-1) d(-1) was achieved during 5 days with an initial sulfur density of 4.7% (w/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号