首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a two-state, two-component, Ising-type model is used to simulate the lateral distribution of the components and gel/fluid state acyl chains in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) lipid bilayers. The same model has been successful in calculating the excess heat capacity curves, the fluorescence recovery after photobleaching (FRAP) threshold temperatures, the most frequent center-to-center distances between DSPC clusters, and the fractal dimensions of gel clusters (Sugar, I. P., T. E. Thompson, and R. L. Biltonen, 1999. Biophys. J. 76:2099-2110). Depending on the temperature and mole fraction the population of the cluster size is either homogeneous or inhomogeneous. In the inhomogeneous population the size of the largest cluster scales with the size of the system, while the rest of the clusters remain small with increasing system size. In a homogeneous population, however, every cluster remains small with increasing system size. For both compositional and fluid/gel state clusters, threshold temperatures-the so-called percolation threshold temperatures-are determined where change in the type of the population takes place. At a given mole fraction, the number of percolation threshold temperatures can be 0, 1, 2, or 3. By plotting these percolation threshold temperatures on the temperature/mole fraction plane, the diagrams of component and state separation of DMPC/DSPC bilayers are constructed. In agreement with the small-angle neutron scattering measurements, the component separation diagram shows nonrandom lateral distribution of the components not only in the gel-fluid mixed phase region, but also in the pure gel and pure fluid regions. A combined diagram of component and state separation is constructed to characterize the lateral distribution of lipid components and gel/fluid state acyl chains in DMPC/DSPC mixtures. While theoretical phase diagrams of two component mixtures can be constructed only in the case of first-order transitions, state and component separation diagrams can be constructed whether or not the system is involved in first-order transition. The effects of interchain interactions on the component and state separation diagrams are demonstrated on three different models. The influences of state and component separation on the in-plane and off-plane membrane reactions are discussed.  相似文献   

2.
In this paper, we describe a relatively simple lattice model of a two-component, two-state phospholipid bilayer. Application of Monte Carlo methods to this model permits simulation of the observed excess heat capacity versus temperature curves of dimyristoylphosphatidylcholine (DMPC)/distearoylphosphatidylcholine (DSPC) mixtures as well as the lateral distributions of the components and properties related to these distributions. The analysis of the bilayer energy distribution functions reveals that the gel-fluid transition is a continuous transition for DMPC, DSPC, and all DMPC/DSPC mixtures. A comparison of the thermodynamic properties of DMPC/DSPC mixtures with the configurational properties shows that the temperatures characteristics of the configurational properties correlate well with the maxima in the excess heat capacity curves rather than with the onset and completion temperatures of the gel-fluid transition. In the gel-fluid coexistence region, we also found excellent agreement between the threshold temperatures at different system compositions detected in fluorescence recovery after photobleaching experiments and the temperatures at which the percolation probability of the gel clusters is 0.36. At every composition, the calculated mole fraction of gel state molecules at the fluorescence recovery after photobleaching threshold is 0.34 and, at the percolation threshold of gel clusters, it is 0.24. The percolation threshold mole fraction of gel or fluid lipid depends on the packing geometry of the molecules and the interchain interactions. However, it is independent of temperature, system composition, and state of the percolating cluster.  相似文献   

3.
V Schram  H N Lin    T E Thompson 《Biophysical journal》1996,71(4):1811-1822
The influence of the lipid mixing properties on the lateral organization in a two-component, two-phase phosphatidylcholine bilayer was investigated using both an experimental (fluorescence recovery after photobleaching (FRAP)) and a simulated (Monte Carlo) approach. With the FRAP technique, we have examined binary mixtures of 1-stearoyl-2-capryl-phosphatidylcholine/1,2-distearoyl-phosphat idylcholine (C18C10PC/DSPC), and 1-stearoyl-2-capryl-phosphatidylcholine/1,2-dipalmitoyl-phospha tid ylcholine (C18C10PC/DPPC). Comparison with the 1,2-dimyristoyl-phosphatidylcholine/1,2-distearoyl-phosphatidylcholine (DMPC/DSPC) previously investigated by FRAP by Vaz and co-workers (Biophys. J., 1989, 56:869-876) shows that the gel phase domains become more effective in restricting the diffusion coefficient when the ideality of the mixture increases (i.e., in the order C18C10PC/DSPC-->C18C10PC/DPPC-->DMPC/DSPC). However, an increased lipid miscibility is accompanied by an increasing compositional dependence: the higher the proportion of the high-temperature melting component, the less efficient the gel phase is in compartmentalizing the diffusion plane, a trend that is best accounted for by a variation of the gel phase domain shape rather than size. Computer-simulated fluorescence recoveries obtained in a matrix obstructed with obstacle aggregates of various fractal dimension demonstrate that: 1) for a given obstacle size and area fraction, the relative diffusion coefficient increases linearly with the obstacle fractal dimension and 2) aggregates with a lower fractal dimension are more efficient in compartmentalizing the diffusion plane. Comparison of the simulated with the experimental mobile fractions strongly suggests that the fractal dimension of the gel phase domains increases with the proportion of high-temperature melting component in DMPC/DSPC and (slightly) in C18C10PC/DPPC.  相似文献   

4.
P Nambi  E S Rowe  T J McIntosh 《Biochemistry》1988,27(26):9175-9182
It is now well established that a number of amphiphilic molecules such as ethanol can induce the formation of the fully interdigitated gel phase in phosphatidylcholines. We have shown earlier that alcohols such as ethanol induce biphasic melting behavior in phosphatidylcholines [Rowe, E. S. (1983) Biochemistry 22, 3299-3305] but not in phosphatidylethanolamines [Rowe, E. S. (1985) Biochim. Biophys. Acta 813, 321-330]. Simon and McIntosh [(1984) Biochim. Biophys. Acta 773, 169-172] showed that the alcohol-induced biphasic melting behavior in phosphatidylcholines is a consequence of acyl chain interdigitation. In the present study we demonstrate the detection of the transition of DPPC and DSPC to the interdigitated phase in the presence of ethanol using the fluorescence properties of the commonly used fluorophore 1,6-diphenyl-1,3,5-hexatriene (DPH). By correlating fluorescence and X-ray diffraction results, we have demonstrated the use of fluorescence to study the phase transition from the noninterdigitated to the interdigitated phase. Using this method, we have investigated the temperature and ethanol concentration dependence of the induction of the interdigitated phase in DSPC and DPPC and shown that the induction of interdigitation by ethanol is temperature dependent, with higher temperature favoring interdigitation. The temperature-ethanol phase diagrams have been determined for DPPC and DSPC.  相似文献   

5.
The cluster patterns of multilamellar vesicles (MLV) of dimyristoylphosphatidylcholine (DMPC) were analyzed using a combination of fractal analysis and lattice simulation. Self-assembly of DMPC MLVs resulted in two types of microscopically observable clusters. The clusters were classified on the basis of their mass fractal dimension, two-dimensional porosity, and the light scattering properties. Spectrin, a cytoskeletal protein, well known for its role in determining the cellular morphology, was used to perturb such spontaneously formed clusters. The fragmentation of the clusters by hydrodynamic perturbation followed a power law, implying again a fractal behavior. A lattice-based simulation was performed generating different class of cluster patterns. The observed correspondence between the cluster patterns and their stability was discussed in the framework of the proposed lattice simulation.  相似文献   

6.
The lateral diffusion of a phospholipid probe is studied in bilayers of binary mixtures of dimyristoylphosphatidylcholine (DMPC)/cholesterol and distearoylphosphatidylcholine (DSPC)/cholesterol and in the ternary system DMPC/DSPC/cholesterol using fluorescence recovery after photobleaching. An approximate phase diagram for the ternary system, as a function of temperature and cholesterol concentration, was obtained using differential scanning calorimetry and the phase diagrams of the binary systems. This phase diagram is similar to those of the phospholipid/cholesterol binary mixtures. In bilayers where solid and liquid phases coexist, the diffusion results are interpreted in terms of phase percolation. The size of the liquid-phase domains is estimated using percolation theory. In the ternary system, addition of cholesterol up to approximately 20 mol% shifts the percolation threshold to lower area fractions of liquid, but the size of the liquid-phase domains does not change. Above approximately 20 mol% cholesterol, the liquid phase is always connected. The size of solid-phase domains clusters is estimated using a model recently developed (Almeida, P.F.F., W.L.C. Vaz, and T.E. Thompson. 1992. Biochemistry. 31:7198-7210). For cholesterol concentrations up to 20 mol%, the size of solid-phase domain units does not change. Beyond 20 mol%, cholesterol causes the size of the solid units to decrease.  相似文献   

7.
To investigate diffusion processes in agarose gel, nanoparticles with sizes in the range between 1 and 140 nm have been tested by means of fluorescence correlation spectroscopy. Understanding the diffusion properties in agarose gels is interesting, because such gels are good models for microbial biofilms and cells cytoplasm. The fluorescence correlation spectroscopy technique is very useful for such investigations due to its high sensitivity and selectivity, its excellent spatial resolution compared to the pore size of the gel, and its ability to probe a wide range of sizes of diffusing nanoparticles. The largest hydrodynamic radius (R(c)) of trapped particles that displayed local mobility was estimated to be 70 nm for a 1.5% agarose gel. The results showed that diffusion of particles in agarose gel is anomalous, with a diverging fractal dimension of diffusion when the large particles become entrapped in the pores of the gel. The latter situation occurs when the reduced size (R(A)/R(c)) of the diffusing particle, A, is >0.4. Variations of the fractal exponent of diffusion (d(w)) with the reduced particle size were in agreement with three-dimensional Monte Carlo simulations in porous media. Nonetheless, a systematic offset of d(w) was observed in real systems and was attributed to weak nonelastic interactions between the diffusing particles and polymer fibers, which was not considered in the Monte Carlo simulations.  相似文献   

8.
The thermodynamic phase behavior and lateral lipid membrane organization of unilamellar vesicles made from mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) were investigated by fluorescence resonance energy transfer (FRET) as a function of temperature and composition. This was done by incorporating a headgroup-labeled lipid donor (NBD-DPPE) and acceptor (N-Rh-DPPE) in low concentrations into the binary mixtures. Two instances of increased energy transfer efficiency were observed close to the phase lines in the DMPC/DSPC phase diagram. The increase in energy transfer efficiency was attributed to a differential preference of the probes for dynamic and fluctuating gel/fluid coexisting phases. This differential preference causes the probes to segregate (S. Pedersen, K. J?rgensen, T. R. Baekmark, and O. G. Mouritsen, 1996, Biophys. J. 71:554-560). The observed increases in energy transfer match with the boundaries of the DMPC/DSPC phase diagram, as measured by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). We propose that the two instances of probe segregation are due to the presence of DMPC-rich and DSPC-rich domains, which form a dynamic structure of gel/fluid coexisting phases at two different temperatures. Monitoring the melting profile of each lipid component independently by FTIR shows that the domain structure is formed by DMPC-rich and DSPC-rich domains rather than by pure DMPC and DSPC domains.  相似文献   

9.
Although it is now well established that the fully interdigitated phase is induced in saturated like-chain phosphatidylcholines (PCs) by a variety of amphipathic molecules including alcohols, no systematic study of the properties of the inducing molecules has been reported. To elucidate the stereochemical features that lead to the alcohol induction of interdigitation in PCs, we have investigated the induction of interdigitation in distearoylphosphatidylcholine (DSPC) by a series of alcohols. Our previously established DPH (1,6-diphenyl-1,3,5-hexatriene) fluorescence intensity method has been expanded (P. Nambi, E. S. Rowe, and T. M. McIntosh (1988), Biochemistry 27:9175-9182) and used to determine which of the alcohols induce interdigitation and to determine the threshold concentrations for each. We have found that each of the n-alcohols up to heptanol and several branched alcohols are capable of inducing interdigitation in DSPC; octanol and nonanol do not appear to induce interdigitation by these criteria. The threshold concentrations for interdigitation for each of these alcohols up to heptanol were found to be correlated with the membrane: buffer partition coefficients. The mole fraction of bound alcohol at the threshold concentration was similar for each of the alcohols up to pentanol. These results are discussed in terms of a general mechanism of the formation of the interdigitated phase.  相似文献   

10.
Tran R  Ho S  Dea P 《Biophysical chemistry》2004,110(1-2):39-47
Differential scanning calorimetry (DSC) and fluorescence spectroscopy are useful techniques for investigating the phase transitions of phospholipid bilayers. In this study, these methods have been extended to determine the effects of ethanol on DSPC and DSPC/2 mol.% cholesterol bilayers. The biphasic effect of the main transition was observed on the DSC heating scans above 0.60 M ethanol. In addition, the concentration at which the biphasic effect occurs is not significantly changed in the presence of 2 mol.% cholesterol. For the fluorescence studies, 1,6-diphenyl-1,3,5-hexatriene (DPH) has been incorporated into the bilayer to monitor the phase transitions through the displacement of DPH. This fluorescent probe is used to directly determine the onset of interdigitation in the bilayer systems as indicated by a large decrease in the DPH fluorescence intensity. The addition of cholesterol lowered and broadened the transition temperatures of the phosphatidylcholine (PC) system. However, 2 mol.% cholesterol did not have a significant effect on the induction of the interdigitated phase in DSPC as observed from the small difference in ethanol threshold concentration for the two systems. This suggests that DSPC forms a more stable interdigitated gel phase than other PCs with shorter acyl chains.  相似文献   

11.
Respiration and metabolism change dramatically over the course of the development of vertebrates. In mammals these changes may be ascribed to organogenesis and differentiation of structures involved in gas exchange and transport and the increase in size. Since young as well as mature individuals must be well-designed if the species is to survive, the physiological changes during the development should be matched with geometrical or structural adjustments of the respiratory system. The aim of this study was to evaluate changes in the fractal geometry of the bronchial tree during the postnatal development of the rat. The average fractal dimension of the bronchial tree of the rats was 1.587, but that of juveniles was larger than that of the adults. We found a significant negative correlation between age and fractal dimension. This correlation could be considered be misleading because of the difficulty of separating age/body size effects. Nevertheless, because fractal dimensions of the bronchial tree of rabbits and humans are known to be similar, 1.58 and 1.57 respectively, the body size effect may be nil. To our knowledge, this is the first report of ontogenetic changes in the fractal dimension of the bronchial tree in mammals.  相似文献   

12.
Ab initio method based on density functional theory at PW91PW91 level has been applied in studying the geometrical structures, relative stabilities, and electronic properties of small bimetallic Au(n)Be(+) (n?=?1-8) cluster cations. The geometrical optimizations indicate that a transition point from preferentially planar (two-dimensional) to three-dimensional (3D) structures occurs at n?=?6. The relative stabilities of Au(n)Be(+) clusters for the ground-state structures are analyzed based on the averaged binding energies, fragmentation energies, and second-order difference of energies. The calculated results reveal that the AuBe(+) and Au(5)Be(+) clusters possess higher relative stability for small size Au(n)Be(+) (n?=?1-8) clusters. The HOMO-LUMO energy gaps as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. Sequently, the natural population analysis and polarizability for our systems have been analyzed and compared further.  相似文献   

13.
Wu H  Xie J  Morbidelli M 《Biomacromolecules》2005,6(6):3189-3197
The CaCl2-induced cold-set aggregation kinetics of the denatured whey protein isolate (WPI) colloids has been investigated under dilute diffusion-limited cluster aggregation (DLCA) conditions, using small-angle light scattering. In particular, the structure factor, the scattered intensity at zero angle and the average radius of gyration have been measured for the aggregating system as a function of time. It is found that the fractal dimension of the clusters is df= 1.85, in the range typical of clusters aggregated under DLCA conditions. The aggregation kinetics in this transition region can be described by a power law relation in the initial stage of the aggregation, but the exponent of the power law is equal to 0.7, i.e., significantly larger than 1/df= 0.54, which is the typical value of the DLCA kinetics. Since it is found that the average gyration radius of the clusters has reached a value of 80 microm, leading to a cumulative volume fraction of clusters equal to 0.25, it is legitimate to expect that the process is in the region of transition from aggregation to gelation. This confirmed by the fact that, at the later stage of the aggregation, the growth of the average cluster size further accelerates with time and eventually becomes explosive, leading to gelation. The observed aggregation kinetics has been compared with that reported in the literature from DLCA Monte Carlo simulations, and a good agreement has been found with the data corresponding to the transition region from aggregation to gelation. Numerical simulations using the Smoluchowski kinetic model have also been carried out in order to support the experimental findings.  相似文献   

14.
Apolipoprotein A-I (apoA-I) interaction with specific cell lipid domains was suggested to trigger cholesterol and phospholipid efflux. We analyzed here apoA-I interaction with dimyristoylphosphatidylcholine/distearoylphosphatidylcholine (DMPC/DSPC) bilayers at a temperature showing phase coexistence. Solid and liquid-crystalline domains were visualized by two-photon fluorescence microscopy on giant unilamellar vesicles (GUVs) labeled with 6-dodecanoyl-2-dimethyl-amino-naphthalene (Laurdan). A decrease of vesicle size was detected as long as they were incubated with lipid-free apoA-I, together with a shape deformation and a relative enrichment in DSPC. Selective lipid removal mediated by apoA-I from different domains was followed in real time by changes in the Laurdan generalized polarization. The data show a selective interaction of apoA-I with liquid-crystalline domains, from which it removes lipids, at a molar ratio similar to the domain compositions. Next, apoA-I was incubated with DMPC/DSPC small unilamellar vesicles, and products were isolated and quantified. Protein solubilized both lipids but formed complexes relatively enriched in the liquid component. We also show changes in the GUV morphology when cooling down. Our results suggest that the most efficient reaction between apoA-I and DMPC/DSPC occurs in particular bilayer conditions, probably when small fluid domains are nucleated within a continuous gel phase and interfacial packing defects are maximal.  相似文献   

15.
The growth of humic acids, prepared by a gentle method from two different kinds of soils (I and II), has been studied using small-angle neutron scattering at an acidity corresponding to pH 5.0 and 0.10 M ionic strength (NaCl). Humic acids aggregate either to large clusters with a fractal dimension of 2.35 and an average diameter of 1720 (I) or to clusters with an average diameter of 700 (II). After storage for 2 days at 4 °C, the latter aggregates (II) formed a gel. In a step toward gelation, we observed cluster-cluster interaction from the neutron-scattering data in the form of a correlation peak. These differences in size can be explained by assuming that the smaller particles (II) are trapped into a nonequilibrium state characterized by the temperature-solvent condition. The importance of a humic acid gel network for the conservation of water and nutrients in the environment is discussed.  相似文献   

16.
The supramolecular aggregation of alpha-crystallin, the major protein of the eye lens, was investigated by means of static and dynamic light scattering. The aggregation was induced by generating heat-modified alpha-crystallin forms and by stabilizing the clusters with calcium ions. The kinetic pattern of the aggregation and the structural features of the clusters can be described according to the reaction limited cluster-cluster aggregation theory previously adopted for the study of colloidal particles aggregation systems. Accordingly, the average mass and the hydrodynamic radius of alpha-crystallin supramolecular aggregates grow exponentially in time. The structure factor of the clusters is typical of fractal aggregates. A fractal dimension df approximately 2.15 was determined, indicating a low probability of sticking together of the primitive aggregating particles. As a consequence, the slow-forming clusters assemble a rather compact structure. The basic units forming the fractal aggregates were found to have a radius about twice (approximately 17 nm) that of the native protein and 5.3 times its size, which is consistent with an intermediate molecular assembly corresponding to the already known high molecular weight forms of alpha-crystallin.  相似文献   

17.
In this work, we highlight the links between fractals and scaling in cells and explore the kinetic consequences for biochemical reactions operating in fractal media. Based on the proposal that the cytoskeletal architecture is organized as a percolation lattice, with clusters emerging as fractal forms, the analysis of kinetics in percolation clusters is especially emphasized. A key consequence of this spatiotemporal cytoplasmic organization is that enzyme reactions following Michaelis-Menten or allosteric type kinetics exhibit higher rates in fractal media (for short times and at lower substrate concentrations) at the percolation threshold than in Euclidean media. As a result, considerably faster and higher amplification of enzymatic activity is obtained. Finally, we describe some of the properties bestowed by cytoskeletal organization and dynamics on metabolic networks.  相似文献   

18.
High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation has fractal characteristics similar to blood flow. We measured regional ventilation and perfusion with aerosolized and injected fluorescent microspheres in six anesthetized, mechanically ventilated pigs in both prone and supine postures. Adjacent regions were clustered into progressively larger groups. Coefficients of variation were calculated for each cluster size to determine fractal dimensions. At the smallest size lung piece, local ventilation and perfusion are highly correlated, with no significant difference between ventilation and perfusion heterogeneity. On average, the fractal dimension of ventilation is 1.16 in the prone posture and 1. 09 in the supine posture. Ventilation has fractal properties similar to perfusion. Efficient gas exchange is preserved, despite ventilation and perfusion heterogeneity, through close correlation. One potential explanation is the similar geometry of bronchial and vascular structures.  相似文献   

19.
Giant unilamellar vesicles (GUVs) composed of different phospholipid binary mixtures were studied at different temperatures, by a method combining the sectioning capability of the two-photon excitation fluorescence microscope and the partition and spectral properties of 6-dodecanoyl-2-dimethylamino-naphthalene (Laurdan) and Lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (N-Rh-DPPE). We analyzed and compared fluorescence images of GUVs composed of 1,2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DLPC/DPPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DLPC/DSPC), 1, 2-dilauroyl-sn-glycero-3-phosphocholine/1, 2-diarachidoyl-sn-glycero-3-phosphocholine (DLPC/DAPC), 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/1, 2-distearoyl-sn-glycero-3-phosphocholine (DMPC/DSPC) (1:1 mol/mol in all cases), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine/1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPE/DMPC) (7:3 mol/mol) at temperatures corresponding to the fluid phase and the fluid-solid phase coexistence. In addition, we studied the solid-solid temperature regime for the DMPC/DSPC and DMPE/DMPC mixtures. From the Laurdan intensity images the generalized polarization function (GP) was calculated at different temperatures to characterize the phase state of the lipid domains. We found a homogeneous fluorescence distribution in the GUV images at temperatures corresponding to the fluid region for all of the lipid mixtures. At temperatures corresponding to phase coexistence we observed concurrent fluid and solid domains in the GUVs independent of the lipid mixture. In all cases the lipid solid domains expanded and migrated around the vesicle surface as we decreased the temperature. The migration of the solid domains decreased dramatically at temperatures close to the solid-fluid-->solid phase transition. For the DLPC-containing mixtures, the solid domains showed line, quasicircular, and dendritic shapes as the difference in the hydrophobic chain length between the components of the binary mixture increases. In addition, for the saturated PC-containing mixtures, we found a linear relationship between the GP values for the fluid and solid domains and the difference between the hydrophobic chain length of the binary mixture components. Specifically, at the phase coexistence temperature region the difference in the GP values, associated with the fluid and solid domains, increases as the difference in the chain length of the binary mixture component increases. This last finding suggests that in the solid-phase domains, the local concentration of the low melting temperature phospholipid component increases as the hydrophobic mismatch decreases. At the phase coexistence temperature regime and based on the Laurdan GP data, we observe that when the hydrophobic mismatch is 8 (DLPC/DAPC), the concentration of the low melting temperature phospholipid component in the solid domains is negligible. This last observation extends to the saturated PE/PC mixtures at the phase coexistence temperature range. For the DMPC/DSPC we found that the nonfluorescent solid regions gradually disappear in the solid temperature regime of the phase diagram, suggesting lipid miscibility. This last result is in contrast with that found for DMPE/DMPC mixtures, where the solid domains remain on the GUV surface at temperatures corresponding to that of the solid region. In all cases the solid domains span the inner and outer leaflets of the membrane, suggesting a strong coupling between the inner and outer monolayers of the lipid membrane. This last finding extends previous observations of GUVs composed of DPPE/DPPC and DLPC/DPPC mixtures (, Biophys. J. 78:290-305).  相似文献   

20.
科尔沁沙地农田沙漠化演变中土壤颗粒分形特征   总被引:66,自引:8,他引:66  
研究了科尔沁沙地农田沙漠化过程中土壤的粗粒化和养分的贫瘠化特征 ,土壤颗粒分形维数的变化特征 ,以及分形维数与土壤性状的关系。结果表明 :土壤沙粒含量越高 ,土壤分形维数越低 ,表征农田沙漠化程度越高 ;土壤颗粒分形维数与土壤有机 C、全 N、粘粉粒含量之间存在显著的线性关系。说明分形维数能很好地表征农田沙漠化演变中土壤结构和养分状况以及沙漠化的程度 ,可作为评价土壤沙漠化演变的一项综合性定量指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号