首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hewitt SC  Korach KS 《Steroids》2000,65(10-11):551-557
Ovarian steroids have important inter-related roles in many systems and processes required for mammalian reproduction. The female reproductive tract, ovaries, and mammary glands are all targets for both estrogen and progesterone. In addition, the actions of these hormones are intertwined in that, for example, progesterone attenuates the proliferative effect of estrogen in the uterus, whereas estrogen also induces the progesterone receptor (PR) mRNA and protein, thus enhancing progesterone actions. The generation of mice that lacks the progesterone receptor (PRKO) or the estrogen receptoralpha (alphaERKO) has provided numerous insights into the interacting roles of these hormones. The mammary glands of the PRKO mice develop with full epithelial ducts that lack side branching and lobular alveolar structures, whereas the alphaERKO mice develop only an epithelial rudiment. This indicates that estrogen is important for ductal morphogenesis, whereas progesterone is required for ductal branching and alveolar development. Both the alphaERKO and PRKO mice are also anovulatory, but exhibit different causal pathologies. The alphaERKO ovary seems to possess follicles up to the preantral stage and shows a polycystic phenotype as a result of chronic hyperstimulation by LH. The PRKO follicles seem to develop to an ovulatory stage, but are unable to rupture, indicating a role for progesterone in ovulation. The uteri of these two strains seem to develop normally; however, the function and hormone responses are abnormal in each. Because estrogen is known to induce PRs in the uterus, the progesterone responsiveness of the alphaERKO uterus was characterized. PR mRNA was detected but was not up-regulated by estrogen in the alphaERKO tissue. PRs are present in the alphaERKO tissue at 60% of the level in wild-type tissue and show a similar amount of A and B isoforms when measured by R5020 binding and detected by Western blotting. The PRs were able to mediate induction of two progesterone-responsive uterine genes: calcitonin and amphiregulin. The alphaERKO uterine tissue was also able to undergo a decidual reaction in response to hormonal and intraluminal treatments to mimic implantation; however, unlike normal wild-type uteri, this response was estrogen independent in the alphaERKO uterine tissue.  相似文献   

2.
Populations of macrophages and neutrophils in the uterus are under the control of the female sex steroids estrogen and progesterone (P4). Their influx is induced by estrogen, while P4 can both stimulate and inhibit leukocyte influx depending on the timing of P4 with respect to estrogen. Regulation of leukocytes has been implicated in changes in uterine immune responses during the estrous cycle, pregnancy, and implantation. This work demonstrates that P4 given concurrently with estrogen to ovariectomized mice for 4 days antagonizes the ability of estrogen to recruit macrophages and neutrophils into the mouse uterus. Using progesterone receptor knockout (PRKO) mice, we show that this effect is dependent on progesterone receptors (PR). In the absence of PR, neutrophils recruited by estrogen were found to be degranulated, partially explaining the edema that is observed with long-term treatment of PRKO mice with estrogen and P4. Populations of B lymphocyte cells were shown to be unchanged by estrogen and P4 treatment in both wild-type and PRKO mice. The neutrophil chemotactic chemokine MIP-2 was examined for down-regulation by P4 but was found to be unaffected by hormonal treatment. Together, these observations demonstrate that PR has a strong anti-inflammatory role in the mouse uterus when estrogen and P4 are present together.  相似文献   

3.
In light of recent clinical trials, the debate concerning the risks and benefits of progestin-based postmenopausal hormone replacement therapy (HRT) has reached a renewed level of urgency. Irrespective of the position taken, the consensus is that more basic research needs to be performed to address progesterone's fundamental role in mammary development and tumorigenesis. Towards this end, the progesterone receptor knockout (PRKO) mouse demonstrated that progesterone is essential for pregnancy-associated mammary gland ductal side-branching and alveologenesis and that these morphological changes are dependent on progesterone-induced mammary epithelial proliferation. Importantly, the PRKO mouse showed that the progesterone-proliferative signal significantly contributes to mammary tumor susceptibility in an established mammary tumor model. Insight into the cellular mechanism(s) by which progesterone affects mammary morphogenesis has been disclosed by a new PR-LacZ knockin mouse, which revealed that PR's spatial expression pattern undergoes precise choreographed distributional changes that precede key stages in postnatal mammary development. In the case of early pregnancy, the segregation of cells undergoing progesterone-induced proliferation from those that express PR implicates a paracrine mode of action for progesterone-induced mammary epithelial proliferation, whereas the preparturient decline of PR expression underscores the need to remove this signal for full functional differentiation of this tissue. Our findings support the proposal that the mammary gland's normal response to the progesterone-signal is dependent upon specific spatial organizational patterns of PR expression and that derailment in these cellular processes may contribute to abnormal mammary development, including cancer. This review concludes by emphasizing the need to identify the downstream molecular targets that mediate progesterone's effects in this tissue. Identification of such targets will not only enhance our mechanistic understanding of progesterone's role in mammary development and cancer, but may also facilitate the formulation of new design strategies in breast cancer diagnosis and/or treatment.  相似文献   

4.
p190-B RhoGAP regulates mammary ductal morphogenesis   总被引:1,自引:0,他引:1  
Previous studies from our laboratory have demonstrated that p190-B RhoGAP (p190-B) is differentially expressed in the Cap cells of terminal end buds (TEBs) and poorly differentiated rodent mammary tumors. Based on these observations we hypothesized that p190-B might play an essential role in invasion of the TEBs into the surrounding fat pad during ductal morphogenesis. To test this hypothesis, mammary development was studied in p190-B-deficient mice. A haploinsufficiency phenotype was observed in p190-B heterozygous mice as indicated by decreased number and rate of ductal outgrowth(s) at 3, 4, and 5 wk of age when compared with their wild-type littermates. This appeared to result from decreased proliferation in the Cap cells of the TEBs, a phenotype remarkably similar to that observed previously in IGF-I receptor null mammary epithelium. Furthermore, decreased expression of insulin receptor substrates 1 and 2 were observed in TEBs of p190-B heterozygous mice. These findings are consistent with decreased IGF signaling observed previously in p190-B-/- mouse embryo fibroblasts. To further assess if this defect was cell autonomous or due to systemic endocrine effects, the mammary anlagen from p190-B+/+, p190-B+/-, and p190-B-/- mice was rescued by transplantation into the cleared fat pad of recipient Rag1-/- mice. Surprisingly, as opposed to 75-80% outgrowths observed using wild-type donor epithelium, only 40% of the heterozygous and none of the p190-B-/- epithelial transplants displayed any outgrowths. Together, these results suggest that p190-B regulates ductal morphogenesis, at least in part, by modulating the IGF signaling axis.  相似文献   

5.
The tumor suppressor p53 is important for inhibiting the development of breast carcinomas. However, little is known about the effects of increased p53 activity on mammary gland development. Therefore, the effect of p53 dosage on mammary gland development was examined by utilizing the p53+/m mouse, a p53 mutant which exhibits increased wild-type p53 activity, increased tumor resistance, a shortened longevity, and a variety of accelerated aging phenotypes. Here we report that p53+/m virgin mice exhibit a defect in mammary gland ductal morphogenesis. Transplants of mammary epithelium into p53+/m recipient mice demonstrate decreased outgrowth of wild-type and p53+/m donor epithelium, suggesting systemic or stromal alterations in the p53+/m mouse. Supporting these data, p53+/m mice display decreased levels of serum IGF-1 and reduced IGF-1 signaling in virgin glands. The induction of pregnancy or treatment of p53+/m mice with estrogen, progesterone, estrogen and progesterone in combination, or IGF-1 stimulates ductal outgrowth, rescuing the p53+/m mammary phenotype. Serial mammary epithelium transplants demonstrate that p53+/m epithelium exhibits decreased transplant capabilities, suggesting early stem cell exhaustion. These data indicate that appropriate levels of p53 activity are important in regulating mammary gland ductal morphogenesis, in part through regulation of the IGF-1 pathway.  相似文献   

6.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

7.
Ovulation: a multi-gene, multi-step process   总被引:6,自引:0,他引:6  
The luteinizing hormone (LH) surge initiates a cascade of proteolytic events that control ovulation. One of the genes induced by LH is the progesterone receptor (PR). Because mice with a mutant PR gene (PRKO) fail to ovulate and are infertile, we have used them as a model in which to determine PR target genes that might mediate the ovulatory process. The matrix metalloproteinases (MMPs: MMP2, MMP9, and MMP13) appear to be expressed in ovaries of PRKO mice in a manner similar to that in their wild-type littermates. However, the expression of two other types of proteases, cathepsin L (a member of the papain family) and ADAMTS-1 (A Disintegrin And Metalloproteinase with Thrombospondin-like motifs), are selectively induced in granulosa cells of preovulatory follicles by the LH surge. Maximal levels of these proteases are observed at 12-16 h after an LH surge, the time of ovulation. Furthermore, mRNAs encoding cathepsin L and ADAMTS-1 are reduced in the PRKO mice compared to their wild-type littermates. These novel observations indicate that these two proteases regulate some key step(s) controlling ovulation.  相似文献   

8.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

9.
The progesterone receptor (PR) is required for several aspects of mammalian female reproduction. PR null mice have overlapping defects that preclude an understanding of its multiple functions in ovulation, pregnancy, mammary gland biology, and sexual behavior. We have generated a PR conditional excision (PRCE) allele in which loxP sites flank exon 1. Homozygous PRCE females are fertile and appear to be functionally normal. Global cre mediated excision of the floxed exon 1 using EIIa-cre mice resulted in systemic loss of exon 1 and PR protein. Female mice homozygous for this null allele were sterile, as expected for PR knockout (PRKO) females. Conditional loss of PR will facilitate investigation of the spatial and temporal roles of PR in both normal development and disease.  相似文献   

10.
Considering the regulatory complexities of progesterone receptor (PR) action throughout the female reproductive axis and mammary gland, we generated a mouse model that enables conditional ablation of PR function in a spatiotemporal specific manner. Exon 2 of the murine PR gene was floxed to generate a conditional PR allele (PRflox) in mice. Crossing the PRflox/flox mouse with the ZP3‐cre transgenic demonstrated that the PRflox allele recombines to a PR null allele (PRd). Mice homozygous for the recombined null PR allele (PRd/d) exhibit uterine, ovarian, and mammary gland defects that phenocopy those of our previously described PR knockout (PRKO) model. Therefore, this conditional mouse model for PR ablation represents an invaluable resource with which to further define in a developmental and/or reproductive stage‐specific manner the individual and integrative roles of distinct PR populations resident in multiple progesterone‐responsive target sites. genesis 48:106–113, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
14.
Vitamin D(3) receptor ablation alters mammary gland morphogenesis   总被引:5,自引:0,他引:5  
Postnatal mammary gland morphogenesis is achieved through coordination of signaling networks in both the epithelial and stromal cells of the developing gland. While the major proliferative hormones driving pubertal mammary gland development are estrogen and progesterone, studies in transgenic and knockout mice have successfully identified other steroid and peptide hormones that impact on mammary gland development. The vitamin D(3) receptor (VDR), whose ligand 1,25-dihydroxyvitamin D(3) is the biologically active form of vitamin D(3), has been implicated in control of differentiation, cell cycle and apoptosis of mammary cells in culture, but little is known about the physiological relevance of the vitamin D(3) endocrine system in the developing gland. In these studies, we report the expression of the VDR in epithelial cells of the terminal end bud and subtending ducts, in stromal cells and in a subset of lymphocytes within the lymph node. In the terminal end bud, a distinct gradient of VDR expression is observed, with weak VDR staining in proliferative populations and strong VDR staining in differentiated populations. The role of the VDR in ductal morphogenesis was examined in Vdr knockout mice fed high dietary Ca(2+) which normalizes fertility, serum estrogen and neonatal growth. Our results indicate that mammary glands from virgin Vdr knockout mice are heavier and exhibit enhanced growth, as evidenced by higher numbers of terminal end buds, greater ductal outgrowth and enhanced secondary branch points, compared with glands from age- and weight-matched wild-type mice. In addition, glands from Vdr knockout mice exhibit enhanced growth in response to exogenous estrogen and progesterone, both in vivo and in organ culture, compared with glands from wild-type mice. Our data provide the first in vivo evidence that 1,25-dihydroxyvitamin D(3) and the VDR impact on ductal elongation and branching morphogenesis during pubertal development of the mammary gland. Collectively, these results suggest that the vitamin D(3) signaling pathway participates in negative growth regulation of the mammary gland.  相似文献   

15.
In normal mammary glands of both rodents and humans, progesterone promotes the proliferation of epithelial cells and several lines of evidence suggest that this action of progesterone may be mediated by progesterone receptor (PR). It is well established that normal mammary development involves a complex interplay between the epithelial cells and the surrounding fatty stroma. Furthermore, during mammary development, there is a change in both the relative proportion of epithelial cells and the steady-state levels of PR. Therefore, towards understanding the precise role of PR in mammary development, we have generated a highly sensitive antibody against mouse PR and examined its pattern of localization. Immunoreactive PR was detected only in the epithelial cells of the ducts while both the adipose and fibrous stroma surrounding these ducts were receptor negative. Similarly, PR mRNA was also associated only with the ductal epithelial cells. Approximately only 45–50% of the ductal cells were receptor positive and this distribution remained unchanged whether or not the tissues had been exposed to estrogen, suggesting that they may represent a distinct subpopulation. The potential significance of these findings to mammary development is discussed.  相似文献   

16.
17.
We studied for the first time the mammary gland morphogenesis and its hormonal modulation by immunolocalizing estradiol, progesterone and prolactin receptors (ER, PR and PRLR) in adult females of Lagostomus maximus, a caviomorph rodent which shows a pseudo-ovulatory process at mid-gestation. Mammary ductal system of non-pregnant females lacks expression of both ERα and ERβ. Yet throughout pregnancy, ERα and ERβ levels increase as well as the expression of PR. These increments are concomitant with ductal branching and alveolar differentiation. Even though mammary gland morphology is quite similar to that described for other rodents, alveolar proliferation and differentiation are accelerated towards the second half of pregnancy, once pseudo-ovulation had occurred. Moreover, this exponential growth correlates with an increment of both progesterone and estradiol serum-induced pseudo-ovulation. As expected, PR and PRLR are strongly expressed in the alveolar epithelium during pregnancy and lactation. Strikingly, PRLR is also present in ductal epithelia of cycling glands suggesting that prolactin function may not be restricted to its trophic effect on mammary glands of pregnant and lactating females, but it also regulates other physiological processes in mammary glands of non-pregnant animals. In conclusion, this report suggests that pseudo-ovulation at mid-gestation may be associated to L. maximus mammary gland growth and differentiation. The rise in P and E2-induced pseudo-ovulation as well as the increased expression of their receptors, all events that correlate with the development of a more elaborated and differentiated ductal network, pinpoint a possible relation between this peculiar physiological event and mammary gland morphogenesis.  相似文献   

18.
Recent studies have demonstrated that physiological doses of progesterone may facilitate the androgen-dependent display of male sexual behavior in laboratory rats and three species of lizard. We used mice with a targeted disruption of the progesterone receptor to investigate whether such interactions exist in male mice and whether they may be modified by sexual experience. We found that naive intact male progesterone receptor knockout (PRKO) mice exhibit reduced mount frequencies compared to wild-type (WT) mice. Also unlike WT mice, sexually experienced PRKO males show profound losses in many measures of sexual behavior following castration. In a second experiment, we tested whether male mice heterozygous for a null mutation at the progesterone receptor locus were responsive to testosterone and progesterone treatment. We found that heterozygous males showed a reduced response to testosterone. The data are consistent with experiments indicating that the progesterone receptor is able to facilitate male-typical sex behaviors in other species and suggest novel mechanisms underlying the interaction of androgens and experience.  相似文献   

19.
We have developed a model of hormonal carcinogenesis in BALB/c female mice, in which MPA induced ductal mammary adenocarcinomas, expressing high levels of estrogen and progesterone receptors (ER and PR). A series of tumor lines, retaining both PR and ER expression, were obtained from selected tumors, which are maintained by syngeneic passages. In this model progesterone behaves as the growth-stimulating hormone (progesterone-dependent or PD tumors), whereas estrogens induce tumor regression. Through selective treatments we were able to derive a series of progesterone-independent (PI) variants. These lines do not require progesterone treatment to grow in ovariectomized female BALB/c mice, but retain, however, the expression of ER and PR. The aim of this paper is to investigate a possible regulatory role of the progesterone receptor (PR) on PI tumor growth. ER and PR were detected by immunocytochemistry in all lines studied. They were also characterized using biochemical assays and Scatchard plots. No differences in Kd of PR or ER were detected in PI variants. AR or GR were not detected in tumor samples using biochemical assays. Estradiol (5 mg silastic pellet) induced complete tumor regression in all tumors tested. We also evaluated the effects of different antiprogestins on tumor growth. Onapristone (10 mg/kg/day) and mifepristone (4.5 mg/kg/day) were able to induce complete tumor regression. The antiandrogen flutamide (5 mg silastic pellet) had no effect on tumor growth in agreement with the lack of androgen receptors. We used an in vitro approach to corroborate that the antiprogestin-induced inhibition was not attributable to an intrinsic effect. Cultures of a selected PI line were treated with PR antisense oligodeoxynucleotides (ASPR) to inhibit in vitro cell proliferation. A significant decrease of 3H-thymidine uptake was observed in cells of a PI line growing in the presence of 2.5% charcoalized fetal calf serum and 0.8-20 microg/ml ASPR. It can be concluded that the PR pathway is an essential path in the growth stimulation of PI tumors.  相似文献   

20.
Using gene-targeting methods, a progesterone receptor Cre knockin (PR-Cre) mouse was generated in which Cre recombinase was inserted into exon 1 of the PR gene. The insertion positions the Cre gene downstream (and under the specific control) of the endogenous PR promoter. As for heterozygotes for the progesterone receptor knockout (PRKO) mutation, mice heterozygous for the Cre knockin insertion are phenotypically indistinguishable from wildtype. Crossing the PR-Cre with the ROSA26R reporter revealed that Cre excision activity is restricted to cells that express PR in progesterone-responsive tissues such as the uterus, ovary, oviduct, pituitary gland, and mammary gland. Initial characterization of the PR-Cre mouse underscores the utility of this model to precisely ablate floxed target genes specifically in cell lineages that express the PR. In the wider context of female reproductive tissue ontology, this model will be indispensable in tracing the developmental fate of cell lineages that descend from PR positive progenitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号