首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Phosphorylation of nuclear protein was investigated with isolated nuclei from rabbit cerebral cortex, cerebellum and liver by using [γ-32P]ATP. The results were compared with the previously reported findings on phosphorylation with tissue slices and [32P]phosphate. Cerebral cortex showed a very high level of phosphorylation, while liver showed the lowest, the difference being several fold in magnitude. With each tissue source, the extent of phosphorylation was maximum at incubation period for 2–3 min with steady decline afterwards. When nuclear proteins were further fractionated into 0.14 m -NaCl-soluble, 0.25 n -HCl-soluble (mainly histone) and acidic phenol-soluble proteins, NaCl-soluble protein showed the highest phosphorylation while HCl-soluble the lowest. The ratio among these tissue sources studied and the ratio among various protein fractions in each tissue source were strikingly similar to what had been shown with tissue slices. Further separation of acidic phenol-soluble protein with polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed retention of the characteristic difference of the pattern of phosphorylation between liver and the CNS tissue as having been observed with tissue slices, although phosphorylation of proteins with molecular weights of less than 40,000 was much reduced with the isolated nuclei. Although other methods with extracted protein kinase or chromatic protein fractions might be more desirable under ordinary situations, the system for nuclear protein phosphorylation with isolated nuclei and [γ-32P]ATP may be useful under certain experimental conditions provided the incubation condition is carefully selected.  相似文献   

2.
Abstract: The cellular localization of two Ca2+-dependent protein phosphorylation systems was investigated using the kainic acid lesioning technique for the selective destruction of neurons. In one of these systems, a crude synaptosomal (P2) fraction was preincubated with 32Pj for 30 min; the phosphorylation of several proteins was increased during a short subsequent incubation with veratridine plus Ca2+. In the second system, crude synaptosomal membranes isolated from the P2 fraction were incubated with [γ-32P]ATP; in this system, the phosphorylation of several proteins was increased in the presence of a "calcium-dependent regulator" plus Ca2+. Kainic acid lesioning greatly reduced the amount of Ca-+-dependent protein phosphorylation in both systems. The results indicate a predominantly neuronal localization for both Ca2+-dependent protein phosphorylation systems.  相似文献   

3.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

4.
Abstract: The effects of a single oral dose of 750 mg/kg tri- o -cresyl phosphate (TOCP) on the endogenous phosphorylation of specific brain proteins were assessed in male adult chickens following the development of delayed neurotoxicity. Phosphorylation of crude synaptosomal (P2) membrane and synaptosomal cytosolic proteins was assayed in vitro by using [γ-32P]ATP as phosphate donor. Following resolution of brain proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis, specific protein phosphorylation was detected by autoradiography and quantified by microdensitometry. TOCP administration enhanced the phosphorylation of both cytosolic (Mr 65,000 and 55,000) and membrane (20,000) proteins by as much as 146% and 200%, respectively.  相似文献   

5.
Abstract Plasma membrane vesicles from Saccharomyces cerevisiae were incubated with [γ-32P]ATP. Several phosphorylated protein bands were separated by LiDS polyacrylamide gel electrophoresis. One of these bands with an apparent M r of 145 000 was identified by immunoprecipitation as a membrane-bound phospholipase.  相似文献   

6.
Abstract: 8-Azidoadenosine triphosphate labeled in the α or γ position with 32P was used as a photoaffinity reagent for identifying ATP binding sites on the external surface of intact rat brain synaptosomes. As revealed by autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns, UV irradiation of intact synaptosomes in the presence of the above radioactive compounds at 5–10 µ M resulted in the formation of several major radioactive conjugates with approximate molecular masses of 29, 45/46, 58, and 93 kDa. Minor bands of 20, 39, 52/54, 82/84, 120, and 140 kDa were also consistently labeled in these experiments. The possibility that labeling of these proteins was due to the presence of contaminating subcellular particles or intrasynaptosomal proteins was excluded. The major 8-azidoadenosine [α-32P]triphosphate-labeled protein complex of ∼45/46 kDa was resolved into several subbands that are labeled differently depending on the type of divalent cations added to the photoaffinity reaction. In the presence of magnesium only, the major labeled band appeared at 45 kDa. With calcium, two additional subbands (43 and 46 kDa) could be distinguished. In the presence of 1 m M EDTA, a band at 44 kDa was labeled within this ATP-binding complex. The labeling pattern of the subbands of this 45/46-kDa complex is consistent with these bands being extracellular ATP-binding proteins on the surface of the synaptosome.  相似文献   

7.
ATP-induced Secretion in PC12 Cells and Photoaffinity Labeling of Receptors   总被引:2,自引:1,他引:1  
Abstract— Secretion of catecholamines by rat PC12 cells is strongly stimulated by extracellular ATP via a P2-type pur-inergic receptor. ATP-induced norepinephrine release was inhibited 80% when extracellular Ca2+ was absent. Only four nucleotides, ATP, ATPγS, benzoylbenzoyl ATP (BzATP), and 2-methylthio-ATP, gave substantial stimulation of norepinephrine release from PC12 cells. ATP-induced secretion was inhibited by Mg2+, and this inhibition was overcome by the addition of excess ATP suggesting that ATP4-was the active ligand. ATP-induced secretion of catecholamine release was enhanced by treatment of cells with pertussis toxin or 12- O -tetradecanoylphorbol 13-acetate. The stimulatory effects of 12- O -tetradecanoyl-phorbol 13-acetate and pertussis toxin on norepinephrine release were additive. After brief exposure of intact cells to the photoaffinity analog, [α-32P]BzATP, two major proteins of 44 and 50 kDa and a minor protein of 97 kDa were labeled. An excess of ATP-γS and BzATP but not GTP blocked labeling of the proteins by [32P]BzATP. Labeling of the 50-kDa protein was more sensitive to competition by 2-methylthio-ATP than the other labeled proteins, suggesting that the 50-kDa protein represents the P2 receptor responsible for ATP-stimulated secretion in these cells.  相似文献   

8.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

9.
Abstract: The nonselective benzodiazepine (BZ) agonist diazepam is a potent inhibitor of adenylyl cyclase (AC) activity in the rat striatum. To examine this inhibitory action of diazepam further, its effects were examined in 6-hydroxydopamine-lesioned animals, which reportedly exhibit sensitization of the striatal AC pathway. As previously observed, inhibition of AC activity by diazepam was biphasic, with the first phase being receptor-mediated, whereas the second phase involves a direct action on the enzyme itself. In the presence of NaCl (120 m M ), a marked sensitization to the receptor-mediated inhibitory effect of diazepam on AC activity was observed in striatal membranes of lesioned animals. EC50 values were 10.4 ± 1.1 and 4.8 ± 0.9 n M ( p < 0.05) for intact and lesioned striata, respectively. An examination of [3H]diazepam binding revealed a significant increase in the density of binding sites in denervated striata, with no change in affinity. A time-dependent increase in [α-32P]GTP labeling of two distinct striatal proteins with apparent molecular masses of 40 and 45 kDa, suggestive of the α subunits of Gi and Gs, respectively, was observed. There was a significant increase in basal [α-32P]GTP binding to both proteins in lesioned striata. In addition, diazepam stimulated [α-32P]GTP binding to the 40-kDa protein, especially in lesioned striata. These data indicate that the sensitization of the receptor-mediated inhibitory effect of diazepam on AC activity in denervated striata may involve up-regulation of BZ receptors as well as enhanced functional coupling of these receptors to inhibitory G proteins.  相似文献   

10.
Abstract Six putative GTP binding proteins were detected by ultraviolet light in the presence of [α-32P]GTP during the developmental cycle of Streptomyces coelicolor . Four out of six were true GTP binding proteins. Immunological reactions carried out with antiserum which recognizes the α-common subunit of G regulatory proteins identified two bands of 67 kDa and 30 kDa. Studies with [γ-32P]GTP showed significant changes in protein phosphorylation during the cell cycle. The results show that at least three different systems of GTP protein interaction are present in S. coelicolor .  相似文献   

11.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

12.
Abstract: Neurofilament polypeptides phosphorylated in vitro by incubation of neurofilament-enriched preparations from rat CNS with [γ-32P]ATP were compared with the corresponding polypeptides labeled in vivo by injection of 32Pi into the lateral ventricles of rats. Autoradiography of sodium dodecyl sulfate (SDS)-polyacrylamide gels revealed that the major phosphorylated species in both preparations were the three neurofilament subunits, which have molecular weights of 200K, 145K, and 68K. However, the relative levels of 32P detected in the three in vitro -labeled subunits differed from the relative in vivo levels. The two larger neurofilament polypeptides displayed similar 32P isoprotein distribution patterns on two-dimensional gels, whereas additional isoproteins were seen in the in vitro -labeled 68K species. Limited proteolysis in SDS-polyacrylamide gels revealed the presence of common phosphopeptides in the corresponding pairs of in vitro- and in vivo-labeled subunits, but the in vivo -labeled 145K and in vitro -labeled 200K polypeptides contained additional digestion products. Two-dimensional peptide mapping of the 68K polypeptide digested with a mixture of trypsin and chymotrypsin indicated that this component was phosphorylated at a single, identical site, both in vivo and in vitro. These results indicate that the protein kinase that copurifies with neurofilament preparations may be involved in their in vivo phosphorylation.  相似文献   

13.
Abstract: Myelin membrane prepared from mouse sciatic nerve possesses both kinase and substrates to incorporate [32P]PO43− from [γ-32P]ATP into protein constituents. Among these, P0 glycoprotein is the major phosphorylated species. To identify the phosphorylated sites, P0 protein was in vitro phosphorylated, purified, and cleaved by CNBr. Two 32P-phosphopeptides were isolated by HPLC. The exact localization of the sequences around the phosphorylated sites was determined. The comparison with rat P0 sequence revealed, besides a Lys172 to Arg substitution, that in the first peptide, two serine residues (Ser176 and Ser181) were phosphorylated, Ser176 appearing to be modified subsequently to Ser181. In the second peptide, Ser197, Ser199, and Ser204 were phosphorylated. All these serines are clustered in the C-terminal region of P0 protein. This in vitro study served as the basis for the identification of the in vivo phosphorylation sites of the C terminal region of P0. We found that, in vivo, Ser181 and Ser176 are not phosphorylated, whereas Ser197, Ser199, Ser204, Ser208, and Ser214 are modified to various extents. Our results strongly suggest that the phosphorylation of these serine residues alters the secondary structure of this domain. Such a structural perturbation could play an important role in myelin compaction at the dense line level.  相似文献   

14.
We have investigated the possibility that ecto-phosphorylation by extracellular ATP may play a role in the development of PC12 cells. To test this model and to identify putative target membrane proteins, intact PC12 cells were radiolabeled by the addition of 20 μM [γ-32P]ATP. An analysis of the labeled proteins revealed that a 57 kDa protein was the most abundant phosphorylated protein even within time periods as short as 3 min and continued to be labeled over and above the level of other proteins. This protein was identified as tyrosine hydroxylase by immunoprecipitation with antiserum to tyrosine hydroxylase. When intact cells were incubated with either [γ-32P]ATP or 32Pi of comparable specific radioactivity, the overall protein labeling pattern and the degree of phosphorylation of tyrosine hydroxylase were similar. There were no discrete proteins that were labeled by [γ-32P]ATP and not by 32Pi that would provide evidence for ecto-kinase activity in PC12 cells. Also, the addition of nonradioactive Pi reduced the incorporation of radioactivity into the protein from extracellular [γ-32P]ATP. These results suggested that the phosphorylation of tyrosine hydroxylase by extracellular [γ-32P]ATP required the initial hydrolysis of ATP and the subsequent incorporation of the 32Pi into the intracellular ATP pool. To support this interpretation, we have demonstrated directly the presence of ecto-ATPase activity in intact PC12 cells by measuring the hydrolysis of extracellular [γ-32P]ATP. Nearly 50% of the total ATP added (20 μM) was hydrolyzed within 10 min under conditions identical to those used to demonstrate intracellular protein phosphorylation. PC12 cells express both a Ca2+-dependent ecto-ATPase activity and a Mg2+-dependent ecto-ATPase activity. In addition, extracellular ATP is degraded enzymatically not only to ADP, but sequentially to adenosine. Our results also point out the difficulties inherent in attempts to identify ecto-kinase activity in cells that also contain ecto-ATPase activities.  相似文献   

15.
ABSTRACT A protein kinase (PK) was partially purified from NaCl extracts of the cell surface complex of Euglena using DEAE-cellulose chromatography. Tubulins extracted either from flagella or from the cell surface complexes of Euglena were readily phosphorylated when incubated with [γ-32P]-ATP and the PK. Protein kinase activity was augmented with 5 mM Mn2+ or Mg2 and was inhibited or had greatly reduced activity with 5 mM Ca2+, Co2-, Cu2+ or Zn2+. Incorporation was much lower when [γ-32P]-GTP was the phosphate donor. Serine and threonine were the major radiolabeled phosphoamino acids in tubulins; label was also found in phosphotyrosine. Alpha-tubulin solubilized from flagella was a relatively poor substrate for the PK, but a Euglena α-tubulin cDNA overexpressed as a Trx-fusion protein incorporated [γ-32P]-ATP into serine and threonine when incubated with cell surface extracts. Alpha- and β-tubulins from cell surface complexes were equally good substrates for the PK. No incorporation was observed in intact microtubules either from the cell surface complex or from isolated flagella. In-gel assays identified a polypeptide of about 30 kDa that phosphorylated tubulins in extracts of both flagella and the cell surface complexes, and dephosphorylated casein was a competitive substrate for the partially purified kinase. In vivo incubation with [32P]-orthophosphate produced numerous radiolabeled bands in acrylamide gels of NaCl extracts of the cell surface complex, but none of these bands could be positively related to tubulins extracted from surface complex microtubules.  相似文献   

16.
Abstract: Synaptosomes from five regions of adult rat brain were isolated, analyzed for methyl acceptor proteins, and probed for methyltransferases by photoaffinity labeling. Methylated proteins of 17 and 35 kDa were observed in all regions, but cerebellar synaptosomes were enriched in a 21–26-kDa family of methyl acceptor proteins and contained a unique major methylated protein of 52 kDa and a protein of 50 kDa, which was methylated only in the presence of EGTA. When cerebellar and liver subcellular fractions were compared, the cytosolic fractions of each tissue contained methylated proteins of 17 and 35 kDa; liver membrane fractions contained few methylated proteins, whereas cerebellar microsomes had robust methylation of the 21–26-kDa group. Differential centrifugation of lysed cerebellar synaptosomes localized the 17- and 35-kDa methyl acceptor proteins to the synaptoplasm, the 21–26-kDa family to the synaptic membranes, and the 52-kDa to synaptic vesicles. The 21–26-kDa family was identified as GTP-binding proteins by [α-32P]GTP overlay assay; these proteins contained a putative methylated carboxyl cysteine, based on the presence of volatile methyl esters and the inhibition of methylation by acetylfarnesylcysteine. The 52-kDa methylated protein also contained volatile methyl esters, but did not bind [α-32P]GTP. When synaptosomes were screened for putative methyltransferases by S -adenosyl-L-[ methyl -3H]methionine photoaffinity labeling, a protein of 24 kDa was detected only in cerebellum, and this labeled protein was localized to synaptic membranes.  相似文献   

17.
Abstract: Calcium ion alone or in the presence of added calmodulin stimulated in vitro transfer of 32P from [γ32P]ATP into several proteins of mitochondrial and synaptosomal particulate fractions from rat brain. Strontium ion was capable of substituting for calcium ion in this stimulation, but barium ion lacked this capacity. These results bring into question the hypothesis that calciumdependent protein phosphorylation of synaptic proteins is intrinsic to neurotransmitter release during neurotransmission, but they do not rule out that possibility.  相似文献   

18.
Inositol glycerolipids make up less than 10% of total phospholipids of Paramecium tetraurelia cells. Unlike inositol lipids found in mammalian and other cell types, these lipids from Paramecium lack arachidonic acid. It was demonstrated that kinase and possibly phosphatase enzymes that interconvert phosphatidylinositol (PI), phosphatidylinositol phosphate (PI-P) and phosphati-dylinositol-bis-phosphate (PI-P2) exist in ciliary membranes of this ciliate. When exogenous soybean PI and [γ-32P]ATP were provided as substrates, isolated cilia preparations exhibited PI and PI-P kinase activities as demonstrated by the incorporation of radiolabel into PI-P and PI-P2. Kinase activity was activated by millimolar [Mg2+] and inhibited by millimolar [Ca2+]. Significant inhibition of kinase activity in the presence of unlabeled excess ATP suggested that ATP is the preferred phosphate donor for this reaction. Of 4 suborganellar fractions of isolated cilia, the membrane fraction had the greatest kinase activity indicating that the enzyme(s) is membrane-associated  相似文献   

19.
Abstract: Studies determined whether α4β2 or α3β2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 n M for α4β2 and 500 n M for α3β2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing α4β2 receptors were incubated with [γ-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the α4 subunit was present. Phosphorylation of α4 subunits of α4β2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing α3β2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the α3 subunit. Results suggest that the PKA-mediated phosphorylation of α4 and not α3 subunits may explain the differential inactivation by nicotine of these receptors subtypes expressed in oocytes.  相似文献   

20.
Abstract: Hippocampal slices were incubated in the presence of [32P]Pi, and protein phosphorylation was examined by means of sodium dodecyl sulfate-gel electrophoresis. Incubation for at least 30 min with 300 μCi of [32P)Pi/brain slice gave rise to the phosphorylation of 8–10 protein bands. Most of these bands showed enhanced phosphorylation in response to noradrenaline. The basal phosphorylation of kainic acid-pretreated hippocampal slices was enhanced two- to threefold compared with controls. There was also an additional increase in kainic acid-pretreated slices in the response to noradrenaline. 8-Br-Cyclic AMP and phosphodiesterase inhibitors, such as papaverine or isobutylmethyl-xanthine, had no effect on the phosphorylation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号