首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.  相似文献   

2.
Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and in vitro models of the lung are needed to elucidate cellular targets and the consequences of viral infection. The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways. To assess infectivity in an in vitro model of human ciliated airway epithelia (HAE) derived from nasal and tracheobronchial airway regions, we generated recombinant SARS-CoV by deletion of open reading frame 7a/7b (ORF7a/7b) and insertion of the green fluorescent protein (GFP), resulting in SARS-CoV GFP. SARS-CoV GFP replicated to titers similar to those of wild-type viruses in cell lines. SARS-CoV specifically infected HAE via the apical surface and replicated to titers of 10(7) PFU/ml by 48 h postinfection. Polyclonal antisera directed against hACE2 blocked virus infection and replication, suggesting that hACE2 is the primary receptor for SARS-CoV infection of HAE. SARS-CoV structural proteins and virions localized to ciliated epithelial cells. Infection was highly cytolytic, as infected ciliated cells were necrotic and shed over time onto the luminal surface of the epithelium. SARS-CoV GFP also replicated to a lesser extent in ciliated cell cultures derived from hamster or rhesus monkey airways. Efficient SARS-CoV infection of ciliated cells in HAE provides a useful in vitro model of human lung origin to study characteristics of SARS-CoV replication and pathogenesis.  相似文献   

3.
ObjectivesHuman airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.MethodsAir-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.ConclusionsALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.  相似文献   

4.
Gene therapy for cystic fibrosis (CF) lung disease requires efficient gene transfer to airway epithelial cells after intralumenal delivery. Most gene transfer vectors so far tested have not provided the efficiency required. Although human respiratory syncytial virus (RSV), a common respiratory virus, is known to infect the respiratory epithelium, the mechanism of infection and the epithelial cell type targeted by RSV have not been determined. We have utilized human primary airway epithelial cell cultures that generate a well-differentiated pseudostratified mucociliary epithelium to investigate whether RSV infects airway epithelium via the lumenal (apical) surface. A recombinant RSV expressing green fluorescent protein (rgRSV) infected epithelial cell cultures with high gene transfer efficiency when applied to the apical surface but not after basolateral inoculation. Analyses of the cell types infected by RSV revealed that lumenal columnar cells, specifically ciliated epithelial cells, were targeted by RSV and that cultures became susceptible to infection as they differentiated into a ciliated phenotype. In addition to infection of ciliated cells via the apical membrane, RSV was shed exclusively from the apical surface and spread to neighboring ciliated cells by the motion of the cilial beat. Gross histological examination of cultures infected with RSV revealed no evidence of obvious cytopathology, suggesting that RSV infection in the absence of an immune response can be tolerated for >3 months. Therefore, rgRSV efficiently transduced the airway epithelium via the lumenal surface and specifically targeted ciliated airway epithelial cells. Since rgRSV appears to breach the lumenal barriers encountered by other gene transfer vectors in the airway, this virus may be a good candidate for the development of a gene transfer vector for CF lung disease.  相似文献   

5.
The neonatal Fc receptor (FcRn) for IgG, an MHC class I-related molecule, functions to transport IgG across polarized epithelial cells and protect IgG from degradation. However, little is known about whether FcRn is functionally expressed in immune cells. We show here that FcRn mRNA was identifiable in human monocytes, macrophages, and dendritic cells. FcRn heavy chain was detectable as a 45-kDa protein in monocytic U937 and THP-1 cells and in purified human intestinal macrophages, peripheral blood monocytes, and dendritic cells by Western blot analysis. FcRn colocalized in vivo with macrosialin (CD68) and Ncl-Macro, two macrophage markers, in the lamina propria of human small intestine. The heavy chain of FcRn was associated with the beta(2)-microglobulin (beta(2)m) light chain in U937 and THP-1 cells. FcRn bound human IgG at pH 6.0, but not at pH 7.5. This binding could be inhibited by human IgG Fc, but not Fab. FcRn could be detected on the cell surface of activated, but not resting, THP-1 cells. Furthermore, FcRn was uniformly present intracellularly in all blood monocytes and intestinal macrophages. FcRn was detectable on the cell surface of a significant fraction of monocytes at lower levels and on a small subset of tissue macrophages that expressed high levels of FcRn on the cell surface. These data show that FcRn is functionally expressed and its cellular distribution is regulated in monocytes, macrophages, and dendritic cells, suggesting that it may confer novel IgG binding functions upon these cell types relative to typical Fc gamma Rs: Fc gamma RI, Fc gamma RII, and Fc gamma RIII.  相似文献   

6.
Macrolide antibiotics have clinical benefits in patients with diffuse panbronchiolitis and in patients with cystic fibrosis. Although many mechanisms have been proposed, the precise mechanisms are still uncertain. We examined the effects of erythromycin on bactericidal activity of airway surface liquid secreted by cultured human tracheal epithelial cells. Airway surface liquid was collected by washing the surface of human tracheal epithelial cells with a sodium solution (40 meq/l). Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa were incubated with airway surface liquid, and the number of surviving bacteria was examined. The number of bacteria in airway surface liquid from the cells cultured in medium alone was significantly lower than that in the sodium solution. Furthermore, the number of bacteria in airway surface liquid from the cells treated with erythromycin was significantly lower than that in airway surface liquid from the cells treated with solvent alone. The production of mRNA and protein of human beta-defensin-1 and human beta-defensin-2 was significantly increased by erythromycin. Bactericidal activity of airway surface liquid was observed at low concentrations (40 meq/l) of sodium but not at higher concentrations (> or =80 meq/l). Airway surface liquid did not contain significant amounts of antibiotics supplemented in the culture medium. Erythromycin at the levels in airway surface liquid and in culture medium did not inhibit bacterial growth. These results suggest that erythromycin may increase bactericidal activity of airway surface liquid in human airway epithelial cells through human beta-defensins production and reduce susceptibility of the airway to bacterial infection.  相似文献   

7.
8.
Epithelial cells interact directly with bacteria in the environment and play a critical role in airway defense against microbial pathogens. In this study, we examined the response of respiratory epithelial cells to infection with nontypable Haemophilus influenzae. Using an in vitro cell culture model, we found that epithelial cell monolayers released significant quantities of IL-8 and expressed increased levels of ICAM-1 mRNA and surface protein in response to H. influenzae. In contrast, levels of IL-1beta, TNF-alpha, and MHC class I were not significantly affected, suggesting preferential activation of a specific subset of epithelial genes directed toward defense against bacteria. Induction of ICAM-1 required direct bacterial interaction with the epithelial cell surface and was not reproduced by purified H. influenzae lipooligosaccharide. Consistent with a functional role for this response, induction of ICAM-1 by H. influenzae mediated increased neutrophil adherence to the epithelial cell surface. Furthermore, in an in vivo murine model of airway infection with H. influenzae, increased epithelial cell ICAM-1 expression coincided with increased chemokine levels and neutrophil recruitment in the airway. These results indicate that ICAM-1 expression on human respiratory epithelial cells is induced by epithelial cell interaction with H. influenzae and suggest that an ICAM-1-dependent mechanism can mediate neutrophil adherence to these cells independent of inflammatory mediator release by other cell types. Direct induction of specific epithelial cell genes (such as ICAM-1 and IL-8) by bacterial infection may allow for rapid and efficient innate defense in the airway.  相似文献   

9.
CCL5 (or RANTES (regulated upon activation, normal T cell expressed and secreted)) recruits T lymphocytes and monocytes. The source and regulation of CCL5 in pulmonary tuberculosis are unclear. Infection of the human alveolar epithelial cell line (A549) by Mycobacterium tuberculosis caused no CCL5 secretion and little monocyte secretion. Conditioned medium from tuberculosis-infected human monocytes (CoMTB) stimulated significant CCL5 secretion from A549 cells and from primary alveolar, but not upper airway, epithelial cells. Differential responsiveness of small airway and normal human bronchial epithelial cells to CoMTB but not to conditioned medium from unstimulated human monocytes was specific to CCL5 and not to CXCL8. CoMTB induced CCL5 mRNA accumulation in A549 cells and induced nuclear translocation of nuclear factor kappaB (NFkappaB) subunits p50, p65, and c-rel at 1 h; nuclear binding of activator protein (AP)-1 (c-Fos, FosB, and c-Jun) at 4-8 h; and binding of NF-interleukin (IL)-6 at 24 h. CCL5 promoter-reporter analysis using deletion and site-specific mutagenesis constructs demonstrated a key role for AP-1, NF-IL-6, and NFkappaB in driving CoMTB-induced promoter activity. The IL-1 receptor antagonist inhibited A549 and small airway epithelial cell CCL5 secretion, gene expression, and promoter activity. CoMTB contained IL-1beta, and recombinant IL-1beta reproduced CoMTB effects. Monocyte alveolar, but not upper airway, epithelial cell networks in pulmonary tuberculosis cause AP-1-, NF-IL-6-, and NFkappaB-dependent CCL5 secretion. IL-1beta is the critical regulator of tuberculosis-stimulated CCL5 secretion in the lung.  相似文献   

10.
BACKGROUND: Following injury to the airway epithelium, rapid regeneration of a functional epithelium is necessary in order to restore the epithelial barrier integrity. In the perspective of airway gene/cell therapy, we analyzed the capacity of human airway epithelial cells cultured as three-dimensional (3-D) spheroid structures to be efficiently transduced on long term by a pseudotyped lentiviral vector. The capacity of the 3-D spheroid structures to repopulate a denuded tracheal basement membrane and regenerate a well-differentiated airway epithelium was also analyzed. METHODS: An HIV-1-derived VSV-G pseudotyped lentiviral vector encoding the enhanced green fluorescent protein (eGFP) was used. Airway epithelial cells were isolated from mature human fetal tracheas and airway xenografts, cultured as 3-D spheroid structures, and either transduced at multiplicity of infection (MOI) 10 and 100 or assayed in an ex vivo and in vivo model to evaluate their regeneration capacity. RESULTS: An in vivo repopulation assay in SCID-hu mice with transduced isolated fetal airway epithelial cells shows that lentiviral transduction does not alter the airway reconstitution. Transduction of the 3-D spheroid structures shows that 12% of cells were eGFP-positive for up to 80 days. In ex vivo and in vivo assays (NUDE-hu mice), the 3-D spheroid structures are able to repopulate denuded basement membrane and reconstitute a well-differentiated human airway surface epithelium. CONCLUSIONS: The efficient and long-term lentiviral transduction of 3-D spheroid structures together with their capacity to regenerate a well-differentiated mucociliary epithelium demonstrate the potential relevance of these 3-D structures in human airway gene/cell therapy.  相似文献   

11.
This study was designed to determine the characteristics of tumour cell-derived microvesicles (TMV) and their interactions with human monocytes. TMV were shed spontaneously by three different human cancer cell lines but their release was significantly increased upon activation of the cells with phorbol 12-myristate 13-acetate (PMA). TMV showed the presence of several surface determinants of tumour cells, e.g. HLA class I, CD29, CD44v7/8, CD51, chemokine receptors (CCR6, CX3CR1), extracellular matrix metalloproteinase inducer (EMMPRIN), epithelial cell adhesion molecule (EpCAM), but their level of expression differed from that on cells they originated from. TMV also carried mRNA for growth factors: vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), interleukin-8 (IL-8) and surface determinants (CD44H). TMV were localized at the monocytes surface following their short exposure to TMV, while at later times intracellularly. TMV transferred CCR6 and CD44v7/8 to monocytes, exerted antiapoptotic effect on monocytes and activated AKT kinase (Protein Kinase B). Thus, TMV interact with monocytes, alter their immunophenotype and biological activity. This implicates the novel mechanism by which tumour infiltrating macrophages may be affected by tumour cells not only by a direct cell to cell contact, soluble factors but also by TMV.  相似文献   

12.
Adherence and phagocytosis of invasive and noninvasive Neisseria meningitidis strains was investigated using light, fluorescence and electron microscopy. Invasive strains were isolated from the cerebrospinal fluid and/or blood of the patients with invasive meningococcal disease and noninvasive strains from the nasopharynx and/or larynx of healthy carriers. Adherence/endocytosis was studied on monkey kidney cells (the LLC-MK2 cell line) and phagocytosis on mouse monocytes and human macrophages (the P388D1 and U-937 cell lines, respectively). Although invasive and noninvasive meningococci isolated in the same cluster showed identical genotype and phenotype markers, they were found to interact differently with epithelial cells as well as with monocytes/macrophages. Invasive isolates displayed higher adherence to the surface of LLC-MK2 cells compared to noninvasive ones. Phagocytosis by P388D1 cells of noninvasive strains was effective and the bacteria were damaged by cytolysis. In contrast, invasive bacteria frequently persisted in "coiling" vacuoles and in effect could destroy the host cell. This is the first demonstration of coiling phagocytosis induced by meningococci. Efficiency of phagocytosis by U-937 cells was significantly higher for the noninvasive than invasive strains. Different behaviour of invasive and noninvasive strains of N. meningitidis observed during 4 hours of interactions with epithelial cells and monocytes/macrophages reflects well the higher pathogenic potential of invasive bacteria.  相似文献   

13.
Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation.  相似文献   

14.
At the site of infection, pro-inflammatory cytokines locally produced by macrophages infected with Trypanosoma cruzi can activate surrounding non-professional phagocytes such as fibroblasts, epithelial and endothelial cells, which can be further invaded by the parasite. The effect of secreted soluble factors on the invasion of these cells remains, however, to be established. We show here that two epithelial cell lines become significantly susceptible to the infection by the Y strain of T. cruzi after tumour necrosis factor (TNF) treatment. The increase in the invasion was correlated with the increasing concentration of recombinant TNF added to cultures of HEK293T or LLC-MK2 cells. Supernatants taken from PMA-differentiated human monocytes infected with T. cruzi also increased the permissiveness of epithelial cells to subsequent infection with the parasite, which was inhibited by a TNF monoclonal antibody. Furthermore, the permissiveness induced by TNF was inhibited by TPCK, and led to significant decrease in the number of intracellular parasites, providing evidence that activation of NF-κB induced by TNF favours the invasion of the epithelial cell lines by T. cruzi through yet an unidentified mechanism. Our data indicate that soluble factors released from macrophages early in the infection favours T. cruzi invasion of non-professional phagocytic cells.  相似文献   

15.
We describe a coculture model of a human intestinal epithelial cell line and human peripheral blood monocytes in which monocytes differentiate into cells with features of resident intestinal macrophages. Caco-2 cells are grown on the lower surface of a semipermeable filter with pore size of 3 μm (Transwells®) until they differentiate into enterocytes. Peripheral-blood monocytes are added and the co-culture incubated for two days. Monocytes migrate through the pores of the membrane, come into direct contact with the basolateral surfaces of the epithelial cell monolayer, and develop characteristics of resident intestinal macrophages including downregulation of CD14 expression and reduced pro-inflammatory cytokine responses (IL-8, TNF and IL-1β) to bacterial products. The apical application of lipopolysaccharide (LPS) and muramyl dipeptide (MDP) resulted in an increased number of integrated monocytes, but abrogated the downregulation of CD14 expression and the diminished cytokine responses. MDP also reduced tight-junctional integrity, whilst LPS had no effect. These data indicate that LPS and MDP have significant pathophysiological effects on enterocyte–monocyte interactions, and confirm other studies that demonstrate that enterocytes and their products influence monocyte differentiation. This model may be useful in providing insights into the interaction between monocytes, epithelial cells and intestinal bacteria in health and disease.  相似文献   

16.
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.  相似文献   

17.
Salmonella species represent a leading cause of gastroenteritis worldwide. More recently, they have been proposed as putative vaccine delivery vehicles in humans. Oral infection with Salmonella leads to invasion of the intestinal epithelial barrier and subsequent interaction with mucosal macrophages. In this study, we investigated the fate of Salmonella typhimurium-infected human macrophages differentiated from blood monocytes by GM-CSF. Wild type S. typhimurium strain SL1344 induced macrophage surface blebbing and caused the release of host cytoplasmic lactate dehydrogenase beginning 30 min post-infection. Three hours later more than 80% of the macrophages in the culture were killed. In contrast, during the same period, macrophages infected with the non-invasive S. typhimurium strain BJ66 remained viable. Chromatin fragmentation is a hallmark of cells undergoing apoptosis. Using TUNEL analysis, we observed chromatin fragmentation in macrophages infected with SL1344 but not in BJ66 infected cells. Consistent with this observation, we found that pretreatment of human macrophages with an inhibitor of caspase-3, a member of the pro-apoptotic enzyme family shown to be involved in S. typhimurium-induced killing of mouse macrophages, reduced SL1344-mediated cytotoxicity by 40%. Our study provides the first evidence that invasive S. typhimurium induces apoptosis in human macrophages that were differentiated from blood monocytes by GM-CSF, and that cell death is a caspase-dependent phenomenon.  相似文献   

18.
Epstein-Barr virus (EBV) causes hairy leukoplakia (HL), a benign lesion of oral epithelium that occurs primarily in the setting of human immunodeficiency virus (HIV)-associated immunodeficiency. However, the mechanisms of EBV infection of oral epithelium are poorly understood. Analysis of HL tissues shows a small number of EBV-positive intraepithelial macrophages and dendritic/Langerhans cells. To investigate a role for these cells in spreading EBV to epithelial cells, we used tongue and buccal explants infected ex vivo with EBV. We showed that EBV first infects submucosal CD14(+) monocytes, which then migrate into the epithelium and spread virus to oral epithelial cells, initiating productive viral infection within the terminally differentiated spinosum and granulosum layers. Incubation of EBV-infected monocytes and oral explants with antibodies to CCR2 receptor and monocyte chemotactic protein 1 prevented entry of monocytes into the epithelium and inhibited EBV infection of keratinocytes. B lymphocytes played little part in the spread of EBV to keratinocytes in our explant model. However, cocultivation of EBV-infected B lymphocytes with uninfected monocytes in vitro showed that EBV may spread from B lymphocytes to monocytes. Circulating EBV-positive monocytes were detected in most HIV-infected individuals, consistent with a model in which EBV may be spread from B lymphocytes to monocytes, which then enter the epithelium and initiate productive viral infection of keratinocytes.  相似文献   

19.
Glycosylated structures on the cell surface have a role in cell adhesion, migration, and proliferation. Repair of the airway epithelium after injury requires each of these processes, but the normal cell surface glycosylation of non-mucin producing airway epithelial cells is unknown. We examined cell surface glycosylation in human airway epithelial cells in tissue sections and in human airway epithelial cell lines in culture. Thirty-eight lectin probes were used to determine specific carbohydrate residues by lectin-histochemistry. Galactose or galactosamine-specific lectins labeled basal epithelial cells, lectins specific for several different carbohydrate structures bound columnar epithelial cells, and fucose-specific lectins labeled all airway epithelial cells. The epithelial cell lines 1HAEo– and 16HBE14o– bound lectins that were specific to basal epithelial cells. Flow cytometry of these cell lines with selected lectins demonstrated that lectin binding was to cell surface carbohydrates, and revealed possible hidden tissue antigens on dispersed cultured cells. We demonstrate specific lectin-binding patterns on the surface of normal human airway epithelial cells. The expression of specific carbohydrate residues may be useful to type epithelial cells and as a tool to examine cell events involved in epithelial repair.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号