首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对中国现代人群的两性身高差异分布状况及其影响因素进行了分析。选用152处中国现代人群(含69处汉族人群和83处少数民族人群)的男、女性身高数据,计算两性身高差异指数,并对比该指数在南、北方汉族和少数民族人群间的分布差异,同时分析纬度、气候、体格大小与城乡环境因素对两性身高差异程度的影响。结果表明,中国男性的平均身高比女性高出约7.16%(4.72%~9.26%);南、北方汉族和少数民族之间的两性身高差异程度相似,北方汉族和南方汉族两性身高差异程度相似,但北方少数民族的两性身高差异明显大于南方少数民族。此外,两性身高差异程度与纬度、气温年较差和年均风速呈低度线性正相关,与年均气温、年均降水量和年均相对湿度呈低度线性负相关,而与体格大小和城乡环境并无显著关联。这提示遗传和自然环境因素在中国现代人群两性身高差异的区域化演变中更趋主导性,而社会环境因素的影响程度相对较低。  相似文献   

2.
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates.  相似文献   

3.
We have analysed the relationship between primate mating system, size and size dimorphism by utilizing several phylogenetically based methods. An independent contrast analysis of male and female size (log weight) showed that these are tightly correlated and that size dimorphism is not a simple allometric function of size. We found no relationship between mating system and sexual dimorphism in strepsirhines but a strong relationship in haplorhines. By matched-pairs analysis, where sister groups were matched according to whether the mating system predicted higher or lower intrasexual selection for male size, haplorhine species in more polygynous clades (with a predicted higher sexual selection) were significantly more dimorphic, had larger males, and also, but to a lesser degree, larger females. Both independent contrast and matched-pairs analyses are non-directional and correlational. By using a directional test we investigated how a transition in mating system affects size and dimorphism. Here, each observation is the sum of changes in dimorphism or size in a clade that is defined by a common origin of a mating system. Generally, dimorphism, as well as male and female size, increased after an expected increase in sexual selection, and decreased after an expected decrease in sexual selection. The pattern was, however, not significant for all of the alternative character reconstructions. In clades with an expected increase in sexual selection, male size increased more than female size. This pattern was significant for all character reconstructions. The directional investigation indicates that the magnitude of change in haplorhine dimorphism is larger after an increase in sexual selection than after a decrease, and, for some reconstructions, that the magnitude of size increase is larger than the magnitude of size decrease for both sexes. Possible reasons for these patterns are discussed, as well as their implications as being one possible mechanism behind Cope's rule, i.e. general size increase in many phylogenetic lineages.  相似文献   

4.
In several animal species, change in sexual size dimorphism is a correlated response to selection on fecundity. In humans, different hypotheses have been proposed to explain the variation of sexual dimorphism in stature, but no consensus has yet emerged. In this paper, we evaluate from a theoretical and an empirical point of view the hypothesis that the extent of sexual dimorphism in human populations results from the interaction between fertility and size-related obstetric complications. We first developed an optimal evolutionary model based on extensive simulations and then we performed a comparative analysis for a total set of 38 countries worldwide. Our optimization modelling shows that size-related mortality factors do indeed have the potential to affect the extent of sexual stature dimorphism. Comparative analysis using generalized linear modelling supports the idea that maternal death caused by deliveries and complications of pregnancy (a variable known to be size related) could be a key determinant explaining variation in sexual stature dimorphism across populations. We discuss our results in relation to other hypotheses on the evolution of sexual stature dimorphism in humans.  相似文献   

5.
The following cultural variables were tested for their association with sexual dimorphism: sexual division of labor, type of subsistence (hunting and agriculture), and polygyny. The transmission of these traits among populations was investigated. All the traits were found to be associated with phylogeny, indicating that they are inherited from mother to daughter populations. A cross-cultural comparative method was used which controls for the statistical effects of similarity due to common ancestry (Galton's problem). Cross-cultural variation in sexual dimorphism in stature is negatively associated with women's contribution to subsistence. Women are taller, relative to men, in societies where women contribute more to food production. This may be because female nutritional status is better in these societies. No relationship was found between sexual dimorphism and other aspects of subsistence or polygyny. These results are discussed in relation to other studies of sexual dimorphism in modern and archaeological populations, and in relation to cross-cultural variation in sex-biased parental investment.  相似文献   

6.
We tested the hypothesis that egg size should evolve in sexually dimorphic birds to reduce costs associated with more rapid growth by nestlings of the larger sex. Consistent with this hypothesis, we found that in species in which males were larger, females laid proportionately larger eggs as sexual size dimorphism increased. However, this result was also consistent with the hypothesis that egg size varied allometrically with both male and female body size. Furthermore we found that in species in which females were larger, relative egg size decreased as size dimorphism increased, which is consistent with the “allometry hypothesis” but not the “cost-reduction hypothesis. That male body size contributes to the allometric relationship between egg size and body size suggests that the basis for the allometric relationship is not wholly a mechanical one stemming from the physical requirements of developing, transporting, and laying an egg of a particular size. Rather, the relationship seems likely to be tied more directly to body size itself the tact that male body size influences a female trait suggests that egg size–body size relationships otter some scope for investigating the basis for allometric relationships in general.  相似文献   

7.
Many mammalian species display sexual dimorphism in the pelvis, where females possess larger dimensions of the obstetric (pelvic) canal than males. This is contrary to the general pattern of body size dimorphism, where males are larger than females. Pelvic dimorphism is often attributed to selection relating to parturition, or as a developmental consequence of secondary sexual differentiation (different allometric growth trajectories of each sex). Among anthropoid primates, species with higher body size dimorphism have higher pelvic dimorphism (in converse directions), which is consistent with an explanation of differential growth trajectories for pelvic dimorphism. This study investigates whether the pattern holds intraspecifically in humans by asking: Do human populations with high body size dimorphism also display high pelvic dimorphism? Previous research demonstrated that in some small-bodied populations, relative pelvic canal size can be larger than in large-bodied populations, while others have suggested that larger-bodied human populations display greater body size dimorphism. Eleven human skeletal samples (total N: male = 229, female = 208) were utilized, representing a range of body sizes and geographical regions. Skeletal measurements of the pelvis and femur were collected and indices of sexual dimorphism for the pelvis and femur were calculated for each sample [ln(M/F)]. Linear regression was used to examine the relationships between indices of pelvic and femoral size dimorphism, and between pelvic dimorphism and female femoral size. Contrary to expectations, the results suggest that pelvic dimorphism in humans is generally not correlated with body size dimorphism or female body size. These results indicate that divergent patterns of dimorphism exist for the pelvis and body size in humans. Implications for the evaluation of the evolution of pelvic dimorphism and rotational childbirth in Homo are considered.  相似文献   

8.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

9.
Contemporary populations of Homo sapiens are sexually dimorphic on a variety of traits. In terms of stature, men are reliably between 4% and 10% taller than women in well-sampled human populations. Are cross-cultural differences in the magnitude of sexual dimorphism consistent with expectations from sexual selection theory? Prior studies have provided conflicting answers to this question in part because they failed to agree on how the force of sexual selection should or could be operationalized. Here we offer a simple and unbiased method for operationalizing sexual selection and retest two separate predictions from earlier work (Alexander et al., 1979) about its expected impact on stature dimorphism in a sample of 155 societies. Neither prediction matches the observed cross-cultural distribution of dimorphism. However, this is not the consequence of a random distribution of dimorphism across societies. Instead, the data exhibit a robust and unexpected pattern.  相似文献   

10.
Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb‐weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum‐likelihood molecular species‐level phylogeny, and then used it to reconstruct sex‐specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female‐biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales.  相似文献   

11.
Females are larger than males in most invertebrate taxa, a phenomenon believed to result from the pressures exerted on female body size by size-dependent fecundity. Male-male competition, which can act on male body size, is not thought to play as important a role in the evolution of sexual size dimorphism in invertebrates as it apparently does in some vertebrate groups. Here, using a comparative approach, the relationship between sexual size dimorphism and adult sex ratio is examined across 46 natural populations (41 species) and 30 experimental populations (21 species) of parasitic nematodes. If male-male competition via physical contests is important, relative male size should increase as the sex ratio becomes less female-biased. This is exactly what was found in the analyses, where residuals of male size regressed on female size were used as measures of sexual size dimorphism. This result was independent of any phylogenetic influences, and was obtained for both natural and experimental nematode populations. In addition, there was no evidence of any Allometric relationship between male and female body size. The average ratio of male size to female size was roughly constant across all species and independent of body size. The results are consistent with a role for male-male competition in explaining specific deviations from the average ratio of male to female body size, suggesting a significant role for sexual selection in the evolution of nematode body sizes.  相似文献   

12.
In this paper we examine whether variation in male and female flower size follows an allometric relation for 10 dioecious species in the genus Dombeya endemic to La Réunion. Male flowers are significantly larger than female flowers and the degree of dimorphism varies significantly across species. There is a significant allometric relationship between male and female flower size: as mean flower size decreases the degree of flower size dimorphism increases. This is the first study to document an allometric relationship between male and female flower size in unisexual plants. We discuss this allometric relationship in relation to two characteristics frequently observed in dioecious flowers: flower size dimorphism is common in unisexual plants and dioecious species often have smaller flowers than hermaphrodites.  相似文献   

13.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

14.
Height and sexual dimorphism of stature among human societies   总被引:1,自引:0,他引:1  
In this study, which is concerned with the varying degrees of sexual dimorphism of stature between human societies, adult male and female height measurements and male-female height ratios – the measure of sexual dimorphism – from 216 societies are statistically compared with several variables: marriage practices, protein availability, the presence of milking herds, settlement size, and climate. Our results indicate that while greater mean male height is associated with polygynous marriage, marriage practices did not exert an influence on the degree of sexual dimorphism of stature. On the other hand, the results suggest that while sexual dimorphism in height has a strong genetic component, dietary factors can influence the degree of dimorphism.  相似文献   

15.
Sexual size dimorphism is generally associated with sexual selection via agonistic male competition in nonhuman primates. These primate models play an important role in understanding the origins and evolution of human behavior. Human size dimorphism is often hypothesized to be associated with high rates of male violence and polygyny. This raises the question of whether human dimorphism and patterns of male violence are inherited from a common ancestor with chimpanzees or are uniquely derived. Here I review patterns of, and causal models for, dimorphism in humans and other primates. While dimorphism in primates is associated with agonistic male mate competition, a variety of factors can affect male and female size, and thereby dimorphism. The causes of human sexual size dimorphism are uncertain, and could involve several non-mutually-exclusive mechanisms, such as mate competition, resource competition, intergroup violence, and female choice. A phylogenetic reconstruction of the evolution of dimorphism, including fossil hominins, indicates that the modern human condition is derived. This suggests that at least some behavioral similarities with Pan associated with dimorphism may have arisen independently, and not directly from a common ancestor.  相似文献   

16.
Using both a conventional and a phylogenetic approach, we tested whether sexual size dimorphism, mating tactic and environmental conditions influenced the between-sex differences in adult survival among 26 populations of polygynous ungulates. As a general rule, male survival was both lower and more variable among species than female survival. Whatever the method we used, sexual size dimorphism had no direct influence on male-biased mortality. In food-limited environments, the survival of males relative to that of females was lower than in good environments, suggesting a cost of large size for males facing harsh conditions. On the other hand, the survival of males relative to that of females tended to increase with sexual size dimorphism in good environments, indicating that large size may be profitable for males facing favourable conditions. Lastly, we found that the between-sex differences in adult survival did not vary with sexual size dimorphism in harem-holding or tending species, but tended to increase with sexual size dimorphism in territorial species. Our analyses indicate that sexual size dimorphism does not lead directly to a decrease in male survival compared to that of females. Thus, environmental conditions rather than the species considered could shape between-sex differences in adult survival observed in ungulate populations.  相似文献   

17.
The patterns of sexual dimorphism as well as the differences in amount between the populations were studied on a sample of 162 male and 159 female left femora, which were classified as Zulu, Sotho, Xosa and South Africans of European extraction. Multivariate analyses revealed that even adjacent African tribes exhibit a different pattern of sexual dimorphism, but there were similarities between Zulu and European femora. Furthermore, relative size differences, i.e. shape, discriminated more clearly between the sexes than did absolute size. Bicondylar width yielded a statistically significant higher degree of sexual dimorphism in Europeans when compared to African populations. This finding was interpreted in terms of the biomechanical demands on the femur under different living conditions. On the other hand, sexual dimorphism of femoral length did not differ among the populations. This was unexpected since femoral length correlates highly with stature, which was reported to show a lesser degree of sexual dimorphism in Africans than in Europeans. Detailed analyses of the results of the present study led to suggest that different living conditions may affect bones in complex ways of which linear growth is only one aspect.  相似文献   

18.
Sexual selection has resulted in sex-based size dimorphism in many mammals, including humans. In Western societies, average to taller stature men and comparatively shorter, slimmer women have higher reproductive success and are typically considered more attractive. This size dimorphism also extends to vocalisations in many species, again including humans, with larger individuals exhibiting lower formant frequencies than smaller individuals. Further, across many languages there are associations between phonemes and the expression of size (e.g. large /a, o/, small /i, e/), consistent with the frequency-size relationship in vocalisations. We suggest that naming preferences are a product of this frequency-size relationship, driving male names to sound larger and female names smaller, through sound symbolism. In a 10-year dataset of the most popular British, Australian and American names we show that male names are significantly more likely to contain larger sounding phonemes (e.g. “Thomas”), while female names are significantly more likely to contain smaller phonemes (e.g. “Emily”). The desire of parents to have comparatively larger, more masculine sons, and smaller, more feminine daughters, and the increased social success that accompanies more sex-stereotyped names, is likely to be driving English-language first names to exploit sound symbolism of size in line with sexual body size dimorphism.  相似文献   

19.
We used a phylogenetic perspective in an examination of the direction and extent of sexual dimorphism in body size and body shape in European newts from the Balkan Peninsula (alpine newts, Mesotriton alpestris; crested newts, Triturus cristatus superspecies; smooth newts, Lissotriton vulgaris). We found a strong, female‐biased sexual size dimorphism (SSD) in the analysed clades of alpine newt, whereas within crested newts we found a less stringent female‐biased SSD in Triturus carnifex, Triturus macedonicus and Triturus karelinii, and no significant SSD in T. cristatus or Triturus dobrogicus. Among the smooth newts, we found male‐biased SSD in Lissotriton vulgaris vularis and Lissotriton vulgaris greacus and no SSD in Lissotriton vulgaris meridionalis. Most of these newts also exhibit a significant sexual dimorphism in body shape, which varied more randomly than body size, regardless of SSD level. Female and male body size as well as the degree of SSD displayed statistically significant phylogenetic signal, while sexual dimorphism in body shape was phylogenetically independent. The relationship between independent contrast data for female size and male size indicated that SSD in European newts could be driven by a disproportionate increase in female size as increase in female size was not accompanied by a proportional increase in male size.  相似文献   

20.
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号