首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major site of phosphorylation of the epidermal growth factor (EGF) receptor after treatment of cells with EGF is threonine 669. Phosphorylation of this site is also associated with the transmodulation of the EGF receptor caused by platelet-derived growth factor and phorbol ester. A distinctive feature of the primary sequence surrounding threonine 669 is the proximity of 2 proline residues (-Pro-Leu-Thr669-Pro-). This site is not a substrate for phosphorylation by protein kinase C. To investigate the mechanism of the increased phosphorylation of the EGF receptor at threonine 669, in vitro assays were used to measure protein kinase and protein phosphatase activities present in homogenates prepared from cells treated with and without EGF. No evidence for the regulation of protein phosphatase activity was obtained in experiments using the [32P]phosphate-labeled EGF receptor as a substrate. A synthetic peptide corresponding to residues 663-681 of the EGF receptor was used as a substrate for protein kinase assays. Incubation of murine 3T3 L1 pre-adipocytes and human WI-38 fibroblasts with EGF caused a rapid increase (3-10-fold) in the level of threonine protein kinase activity detected in cell homogenates. Similar results were obtained after EGF treatment of Chinese hamster ovary cells expressing wild-type (Thr669) and mutated (Ala669) human EGF receptors. Activation of the threonine protein kinase activity was also observed in cells treated with platelet-derived growth factor, serum, and phorbol ester. Insulin-like growth factor-1 caused no significant change in protein kinase activity. Together these data indicate a role for the regulation of the activity of a threonine protein kinase in the control of the phosphorylation state of the EGF receptor at threonine 669. The significance of the identification of a growth factor-stimulated threonine protein kinase to the mechanism of signal transduction is discussed.  相似文献   

2.
The isoleucine-23 residue of human epidermal growth factor (hEGF) was substituted by a variety of amino acid residues and the receptor-binding activities of variant hEGFs were determined by the use of human KB cell. Tight receptor binding was found of variants with hydrophobic amino acid residues in position 23. The size of the isoleucine residue was nearly optimum for the receptor binding as compared with other hydrophobic residues. The structure analysis by two-dimensional nuclear magnetic resonance spectroscopy showed that the substitution at position 23 only slightly affected the tertiary structure of hEGF. These indicate that the side chain of isoleucine residue in position 23, which is exposed on the protein surface, directly binds to a hydrophobic pocket of the receptor.  相似文献   

3.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

4.
Wild-type murine epidermal growth factor (mEGF) and mutants with Leu47 replaced by serine and valine, respectively, have been produced by recombinant DNA methodology. A synthetic gene for mEGF was fused to the coding sequence for the signal peptide of the outer membrane protein A (ompA) of Escherichia coli in the secretion vector pIN-III-ompA3, and the recombinant plasmid was used to transform E. coli. Upon induction of gene expression, mEGF and the mutants was expressed and secreted into the periplasmic space. Purification of the wild-type Leu47-mEGF and the mutants was carried out by reversed-phase and anion-exchange high-performance liquid chromatography (HPLC). Amino acid analysis and Western blot analysis further confirmed the identities of the proteins. Specific activities for wild-type and mutant proteins were measured in both mEGF receptor binding and autophosphorylation assays. The recombinant mEGF has specific activities identical with that of mEGF purified from mouse submaxillary glands, while both mutants have reduced specific activities in both bioassays. The data demonstrate the importance of the highly conserved Leu47 residue in mEGF for full biological activity.  相似文献   

5.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

6.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Immunoaffinity-purified insulin receptors were used to analyse and compare the serine/threonine sites phosphorylated on the insulin receptor in vitro (isolated receptor) with the insulin-stimulated phosphorylation in vivo (intact cells in culture). In vivo, insulin-stimulation resulted in the appearance of three phosphoserine-containing phosphopeptides and a distinct phosphothreonine peptide (threonine 1348). In vitro, similar phosphoserine peptides were observed but the phosphothreonine peptide was absent. These results indicate that multiple serine sites are phosphorylated in vivo and in vitro and that an additional protein kinase mediates insulin-stimulated insulin receptor threonine phosphorylation in vivo.  相似文献   

8.
Partial proteolysis with trypsin has been used to map the sites of phorbol ester-induced phosphorylation of the epidermal growth factor (EGF) receptor. Both 12-O-tetradecanoylphorbol 13-acetate (TPA) and EGF stimulate phosphorylation of the EGF receptor in intact human carcinoma cells. Under the conditions examined, EGF is more effective than TPA in stimulating phosphorylation of a 45 kDa intracellular receptor domain, while TPA is more effective than EGF in inducing phosphorylation of a 120 kDa transmembrane EGF-binding domain. The phosphorylation of the 120 kDa peptide occurs primarily on threonine residues. Two-dimensional peptide mapping indicates that the two major phosphopeptides found in the 120 kDa receptor fragment correspond to the major new phosphopeptides found in intact EGF receptor following treatment with TPA. Thus, the major sites of TPA-induced threonine phosphorylation reside in the 120 kDa binding domain of the EGF receptor.  相似文献   

9.
The major site of epidermal growth factor receptor (EGF-R) serine phosphorylation is located within the COOH-terminal domain of the receptor at Ser1046/7. We have previously demonstrated that this phosphorylation site accounts for the acute desensitization of the EGF-R observed in EGF-treated cells. Here we show that the mutational removal of this negative regulatory phosphorylation site causes potentiation of signal transduction by the EGF-R. This potentiation can be accounted for in part by a block in the EGF-stimulated down-regulation of the EGF-R. These data indicate that the SER1046/7 phosphorylation site may have a regulatory role during long term incubation of cells with mitogenic concentrations of EGF.  相似文献   

10.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

11.
It has been proposed that the acute desensitization of epidermal growth factor receptor (EGF-R) function can be accounted for, in part, by the effect of EGF to increase phosphorylation of the receptor at Ser1046/7 (Countaway, J.L., Nairn, A.C., and Davis, R.J. (1992) J. Biol. Chem. 267, 1129-1140). Here, we show that the mutational removal of this phosphorylation site causes an activation of EGF-R function and a potentiation of signal transduction. The mechanism of potentiation results from 1) defective down-regulation of the EGF-R when cells are incubated with high concentrations of EGF; and 2) increased EGF-stimulated tyrosine phosphorylation. The increased EGF-stimulated phosphorylation is associated with an alteration of the apparent specificity of tyrosine phosphorylation and is independent of the down-regulation defect. Together, these data strongly support the hypothesis that Ser1046/7 is a biologically significant site of regulatory phosphorylation of the EGF-R.  相似文献   

12.
Epidermal growth factor receptor (EGFR) signaling is initiated by ligand binding followed by homodimerization and rapid receptor autophosphorylation. Monitoring EGFR phosphorylation was achieved by measuring translocation and binding of an enhanced yellow fluorescent protein (EYFP)-labeled phosphotyrosine-binding domain (PTB) to enhanced cyan fluorescent protein (ECFP)-tagged EGFR using fluorescence lifetime imaging microscopy or sensitized emission measurements. To simplify dynamic phosphorylation pattern measurements in cells, FLAME, a ratiometric sensor containing both EGFR-ECFP and PTB-EYFP in one molecule, was designed and examined in COS7 cells. Epidermal growth factor (EGF) treatment demonstrated rapid and reversible changes in the EYFP/ECFP fluorescence emission ratios, due to binding of the PTB domain to its consensus binding sites upon phosphorylation at the cell periphery, whereas perinuclear regions failed to respond to EGF but were responsive to tyrosine kinase inhibition. Long-term EGF treatment resulted in accumulation of dephosphorylated receptor in the perinuclear region due to active dephosphorylation occurring at intracellular sites. This indicates that the sensor closely approaches the true dynamics of tyrosine kinase autophosphorylation and dephosphorylation. Phosphatase inhibition by pervanadate resulted in an irreversible response in all cellular compartments. These data show that EGFR is under tonic phosphatase suppression maintaining the receptor in an unphosphorylated (silent) state and is dephosphorylated at endomembranes after ligand-mediated endocytosis.  相似文献   

13.
14.
Phosphorylation is one of the most common forms of protein modification. The most frequent targets for protein phosphorylation in eukaryotes are serine and threonine residues, although tyrosine residues also undergo phosphorylation. Many of the currently applied methods for the detection and localization of protein phosphorylation sites are mass spectrometry-based and are biased against the analysis of tyrosine-phosphorylated residues because of the stability and low reactivity of phosphotyrosines. To overcome this lack of sensitive methods for the detection of phosphotyrosine-containing peptides, we have recently developed a method that is not affected by the more predominant threonine or serine phosphorylation within cells. It is based on the specific detection of immonium ion of phosphotyrosine at 216.043 Da and does not require prior knowledge of the protein sequence. In this report, we describe the first application of this new method in a proteomic strategy. Using anti-phosphotyrosine antibodies for immunoprecipitation and one-dimensional gel electrophoresis, we have identified 10 proteins in the epidermal growth factor receptor signaling pathway, of which 8 have been shown previously to be involved in epidermal growth factor signaling. Most importantly, in addition to several known tyrosine phosphorylation sites, we have identified five novel sites on SHIP-2, Hrs, Cbl, STAM, and STAM2, most of which were not predicted to be phosphorylated. Because of its sensitivity and selectivity, this approach will be useful in proteomic approaches to study tyrosine phosphorylation in a number of signal transduction pathways.  相似文献   

15.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

16.
Thrombopoietin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Numerous studies have shown that TPO binding leads to JAK2 kinase activation and Tyr phosphorylation of c-Mpl and several intracellular signaling intermediates, events vital for the biological activity of the hormone. In contrast, virtually nothing is known of the role of Ser or Thr phosphorylation of c-Mpl. By using phosphoamino acid analysis we found that Ser residues of c-Mpl were constitutively phosphorylated in receptor-bearing cells, levels that were increased following exposure of cells to TPO. To identify which residues were modified, and to determine the functional consequences of their phosphorylation, we generated a series of Ser to Ala mutations of a truncated c-Mpl receptor (T69) capable of supporting TPO-induced cell growth. Of the eight Ser within T69 we found that at least four are phosphorylated in TPO-stimulated cells. The mutation of each of these residues alone had minimal effects on TPO-induced proliferation, but substitution of all of the phosphoserine residues with Ala reduced the capacity of the receptor to support cell growth by over 50%. Additionally, the Ser at cytoplasmic position 18 is not detectably phosphorylated. However, the mutation of Ser-18 to Ala nearly abrogates TPO-induced proliferation and co-precipitation of JAK2 with Mpl. This study provides the first systematic analysis of the role of Ser residues in c-Mpl signaling.  相似文献   

17.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

18.
4 beta-Phorbol 12 beta-myristate 13 alpha-acetate (PMA) markedly inhibited the binding of low concentrations (less than 10(-9 m) of 125I-epidermal growth factor (EGF) to A431 human epidermoid carcinoma cells. However, very little change in the binding of 125-I-EGF at high concentrations (greater than 10(-8) M) was observed in response to PMA. Affinity labeling of the 170,000-dalton EGF receptor with 125I-EGF and disuccinimidyl suberate was also decreased by the tumor promoter at low, but not high, concentrations of 125I-EGF. In order to examine this action of PMA on the EGF receptor, the receptor phosphorylation state was evaluated in A431 cells that had been incubated with [32P]phosphate for 3 h prior to the addition of PMA. The 32P content of the EGF receptor purified with EGF-Sepharose was increased by 38% compared with the same amount of receptor isolated from control cells. The increase in EGF receptor phosphorylation was dose-dependent with a half-maximal effect between 0.1 and 1 nM PMA and was specific for tumor promoting analogues of phorbol diesters. Phosphoamino acid analysis indicated that the increase in the 32P content of the EGF receptor was mainly due to phosphoserine. These results demonstrate that the EGF receptor is a target for PMA action and suggest that the mechanism of PMA action on the response of cells to epidermal growth factor may be mediated in part by phosphorylation of the EGF receptor.  相似文献   

19.
To study cross-talk between unoccupied epidermal growth factor (EGF) receptors and activated EGF receptor kinases, we have used double-transfected cells, IHE2 cells, expressing both an enzymatically active insulin-EGF chimeric receptor and an inactive kinase EGF receptor mutant. Using immunoaffinity-purified receptors, we show that insulin increased phosphorylation of the insulin-EGF chimeric beta subunit and of the kinase-deficient EGF receptor. Stimulation of intact IHE2 cells with insulin leads to a rapid tyrosine autophosphorylation of the insulin-EGF chimeric beta subunit and to tyrosine phosphorylation of the unoccupied kinase-deficient EGF receptor. Insulin-stimulated transphosphorylation of the kinase-deficient EGF receptor yields the same pattern of tryptic phosphopeptides as those in EGF-induced autophosphorylation of the wild-type human EGF receptor. We conclude that insulin, through activation of the insulin-EGF chimeric receptor, mediates transphosphorylation of the kinase-deficient EGF receptor, further confirming that EGF receptor autophosphorylation may proceed by an intermolecular mechanism. In addition to receptor tyrosine phosphorylation, we find that exposure of cells to insulin results in enhanced phosphorylation on serine and threonine residues of the unoccupied kinase-deficient EGF receptor. These results suggest that insulin-EGF chimeric receptor activation stimulates at least one serine/threonine kinase, which in turn phosphorylates the kinase-deficient EGF receptor. Finally, we show that transphosphorylation and coexpression of an active kinase cause a decrease in the number of cell surface kinase-deficient EGF receptors without increasing their degradation rate.  相似文献   

20.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号