首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-treatment of straw with anhydrous ammonia increased its susceptibility to solubilization by the predominant cellulolytic bacteria from the rumen, Bacteroides succinogenes, Ruminococcus albus and R. flavefaciens. Ammonia treatment also increased the production of microbial protein and fermentation products by all three species. Scanning electron microscope observations of straw during digestion suggested that the attack of straw by these bacteria was accompanied by the formation of substantial numbers of adherent microcolonies.  相似文献   

2.
Pre-treatment of straw with anhydrous ammonia increased its susceptibility to solubilization by the predominant cellulolytic bacteria from the rumen, Bacteroides succinogenes, Ruminococcus albus and R. flavefaciens. Ammonia treatment also increased the production of microbial protein and fermentation products by all three species. Scanning electron microscope observations of straw during digestion suggested that the attack of straw by these bacteria was accompanied by the formation of substantial numbers of adherent microcolonies.  相似文献   

3.
Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.  相似文献   

4.
Pure cultures and pair-combinations of strains representative of the rumen cellulolytic species Ruminococcus flavefaciens, Fibrobacter succinogenes and Butyrivibrio fibrisovens were grown on cell-wall materials from barley straw. Of the pure cultures, R. flavefaciens solubilized straw most rapidly. The presence of B. fibrisolvens , which was unable to degrade straw extensively in pure culture, increased the solubilization of dry matter by R. flavefaciens and the solubilization of cell-wall carbohydrates by both R. flavefaciens and F. succinogenes. During fermentation, both R. flavefaciens and F. succinogenes released bound glucose and free and bound arabinose and xylose into solution. The accumulation of these sugars, especially arabinose and xylose, was greatly reduced in co-cultures containing B. fibrisolvens , suggesting that significant interspecies cross feeding of the products of hemicellulose hydrolysis (particularly soluble bound xylose released by F. succinogenes ) occurs during straw degradation by mixed cultures containing this species.  相似文献   

5.
Maceration of Clover and Grass Leaves by Lachnospira multiparus   总被引:3,自引:2,他引:1       下载免费PDF全文
A strain of Lachnospira multiparus, a pectin-hydrolyzing bacterium from the rumen, was incubated in nutrient media in the presence of surface-disinfected clover leaflets. When the culture flasks containing the leaflets together with Lachnospira were shaken after overnight incubation, extensive maceration of the leaflets was seen, although uninoculated control leaflets remained intact during a similar treatment. Examination of inoculated leaflets by transmission electron microscopy showed extensive invasion of intercellular areas of the mesophyll tissue but only minor invasion of vascular tissue. Cutting the leaves before incubation greatly increased the ability of L. multiparus to colonize and macerate the leaflets. Similar experiments with grass leaves are also described, and the possible role of maceration in the digestion of plant material in the rumen is discussed. Although Lachnospira stains gram variable and often gram negative, the ultrastructure of the cell wall was that of a gram-positive bacterium.  相似文献   

6.
Four naturally born lambs were placed in sterile isolators 24 h after birth before the natural establishment of cellulolytic microorganisms and archaea methanogens. At the age of 6 weeks they were inoculated with pure cultures of the strains FD1 and 007 of Ruminococcus flavefaciens and at the age of 4 months with a pure culture of Methanobrevibacter sp. MF1. Following the establishment of MF1, the population of R. flavefaciens slightly increased in the rumen of the four lambs, there was also an increase in straw degradation, in the activity of some glycoside and polysaccharide hydrolases of the adherent microbial populations and in the concentration of acetate in ruminal contents.  相似文献   

7.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

8.
The rate of cellulose digestion in the presence of either glucose or cellobiose was studied for the three predominant species of cellulolytic rumen bacteria: Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes. When a soluble carbohydrate was added to cellulose broth, the lag phase of cellulose digestion was shortened. Presumably, this was due to greater numbers of bacteria, because increasing the size of the inoculum had a similar effect. Cellulose digestion occurred simultaneously with utilization of the soluble carbohydrate. The rate of cellulose digestion slowed markedly for B. succinogenes and R. flavefaciens and slowed less for R. albus after the cellobiose or glucose had been utilized, and was accompanied by a decrease in pH. Both the rate and the extent of cellulose digestion were partially inhibited when the initial pH of the medium was 6.3 or below. R. albus appeared to be less affected by a low-pH medium than were B. succinogenes and R. flavefaciens. When a soluble carbohydrate was added to the fermentation during the maximum-rate phase of cellulose digestion, the rate of cellulose digestion was not affected until after the soluble carbohydrate had been depleted and the pH had decreased markedly. Prolonged exposure of the bacteria to a low pH had little if any effect on their subsequent ability to digest cellulose. Cellulase activity of intact bacterial cells appeared to be constitutive in nature for these three species of rumen bacteria.  相似文献   

9.
Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population.  相似文献   

10.
Specific oligonucleotide probes targeted to sites on the 16S rRNA of Ruminococcus albus 8, Ruminococcus flavefaciens FD-1, and Fibrobacter succinogenes S85 and a domain Bacteria probe were used to study bacterial interactions during the fermentation of cellulose and alkaline hydrogen peroxide-treated wheat straw in monocultures, dicultures, and tricultures. Results showed that R. albus 8 inhibited the growth of R. flavefaciens FD-1 when grown as a diculture with cellulose or alkaline hydrogen peroxide-treated wheat straw as the carbon source. In dicultures containing R. albus 8 and F. succinogenes S85 grown on cellulose or alkaline hydrogen peroxide-treated wheat straw, competition was not detected. R. flavefaciens FD-1 outcompeted F. succinogenes S85 when cellulose was used as the carbon source. In tricultures with cellulose as the carbon source, R. flavefaciens FD-1 was inhibited, R. albus 8 appeared to dominate during the early phase of degradation (12 to 48 h), while F. succinogenes S85 became predominant during the later phase of degradation (60 to 70 h). When alkaline hydrogen peroxide-treated wheat straw was used as a growth substrate, F. succinogenes S85 showed better growth than either R. albus 8 or R. flavefaciens FD-1. However, R. flavefaciens FD-1 was present in small numbers throughout the incubation period, unlike the growth patterns when cellulose was the carbon source.  相似文献   

11.
This study was conducted to investigate effects of disodium fumarate (DF) on fermentation characteristics and microbial populations in the rumen of Hu sheep fed on high-forage diets. Two complementary feeding trials were conducted. In Trial 1, six Hu sheep fitted with ruminal cannulae were randomly allocated to a 2 × 2 cross-over design involving dietary treatments of either 0 or 20 g DF daily. Total DNA was extracted from the fluid- and solid-associated rumen microbes, respectively. Numbers of 16S rDNA gene copies associated with rumen methanogens and bacteria, and 18S rDNA gene copies associated with rumen protozoa and fungi were measured using real-time PCR, and expressed as proportion of total rumen bacteria 16S rDNA. Ruminal pH decreased in the DF group compared with the control (P < 0.05). Total volatile fatty acids increased (P < 0.001), but butyrate decreased (P < 0.01). Addition of DF inhibited the growth of methanogens, protozoa, fungi and Ruminococcus flavefaciens in fluid samples. Both Ruminococcus albus and Butyrivibrio fibrisolvens populations increased (P < 0.001) in particle-associated samples. Trial 2 was conducted to investigate the adaptive response of rumen microbes to DF. Three cannulated sheep were fed on basal diet for 2 weeks and continuously for 4 weeks with supplementation of DF at a level of 20 g/day. Ruminal samples were collected every week to analyze fermentation parameters and microbial populations. No effects of DF were observed on pH, acetate and butyrate (P > 0.05). Populations of methanogens and R. flavefaciens decreased in the fluid samples (P < 0.001), whereas addition of DF stimulated the population of solid-associated Fibrobacter succinogenes. Population of R. albus increased in the 2nd to 4th week in fluid-associated samples and was threefold higher in the 4th week than control week in solid samples. Analysis of denaturing gradient gel electrophoresis fingerprints revealed that there were significant changes in rumen microbiota after adding DF. Ten of 15 clone sequences from cut-out bands appearing in both the 2nd and the 4th week were 94% to 100% similar to Prevotella-like bacteria, and four sequences showed 95% to 98% similarity to Selenomonas dianae. Another 15 sequences were obtained from bands, which appeared in the 4th week only. Thirteen of these 15 sequences showed 95% to 99% similarity to Clostridium sp., and the other two showed 95% and 100% similarity to Ruminococcus sp. In summary, the microorganisms positively responding to DF addition were the cellulolytic bacteria, R. albus, F. succinogenes and B. fibrisolvens as well as proteolytic bacteria, B. fibrisolvens, P. ruminicola and Clostridium sp.  相似文献   

12.
The influence of three different feeds, wheat straw, sorghum and berseem, on total and cellulolytic bacterial counts in the buffalo rumen at different time intervals from 0 to 8 h after feeding was studied. Berseem feeding supported maximum growth of rumen bacteria in general and cellulolytic bacteria in particular. Wheat straw supported the poorest growth.
The types of cellulolytic bacteria recovered from the rumen of adult buffaloes were Ruminococcus albus, R. flavefaciens, Bacteroides succinogenes, Butyrivibrio fibrisolvens, Clostridium lochheadii, Cl. longisporum and other Clostridium spp. Cellulolytic cocci were present in smaller numbers than rod forms in the rumen of wheat-straw-fed buffaloes, whereas the cocci outnumbered rod forms in sorghum-and berseem-fed buffaloes.  相似文献   

13.
The cellulolytic rumen bacteriumRuminococcus flavefaciens 17 was found to produce multiple xylanases ranging in apparent molecular weight from 55 to 200 kDa. A 55 kDa xylanase showed constitutive synthesis, but formation of the larger enzymes was increased in cultures grown with avicel, straw, or xylan, compared with cellobiose, as the energy source. At least six xylanases were detected in cultures grown with oat straw or oat xylan. Polyclonal antibodies were raised against the amino (A) or carboxy terminal (C) domains of the bifunctional XYNA product of the clonedR. flavefaciens xynA gene. Both antibody preparations recognized several xylanases larger than 80 kDa fromR. flavefaciens cells grown with avicel, straw, or xylan, indicating the production of multiple, antigenically related enzymes during growth on these substrates. Neither antibody preparation recognized the constitutive 55-kDa xylanase.  相似文献   

14.
AIM: To examine the effect of sulfur-containing compounds on the growth of anaerobic rumen fungi and the fibrolytic rumen bacteria Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in pure culture and within the cattle rumen. METHODS AND RESULTS: The effect of two reduced sulfur compounds, 3-mercaptopropionic acid (MPA) or 3-mercapto-1-propanesulfonic acid as the sole S source on growth of pure fibroyltic fungal and bacterial cultures showed that these compounds were capable of sustaining growth. An in vivo trial was then conducted to determine the effect of sulfur supplements (MPA and sodium sulfate) on microbial population dynamics in cattle fed the roughage Dichanthium aristatum. Real-time PCR showed significant increases in fibrolytic bacterial and fungal populations when cattle were supplemented with these compounds. Sulfate supplementation leads to an increase in dry matter intake without a change in whole tract dry matter digestibility. CONCLUSIONS: Supplementation of low S-containing diets with either sodium sulfate or MPA stimulates microbial growth with an increase in rumen microbial protein supply to the animal. SIGNIFICANCE AND IMPACT OF THE STUDY: Through the use of real-time PCR monitoring, a better understanding of the effect of S supplementation on discrete microbial populations within the rumen is provided.  相似文献   

15.
Ruminococcus flavefaciens is a vital cellulosome-producing fibrolytic rumen bacterium. The arrangement of the cellulosomal scaffoldin gene cluster ( scaC–scaA–scaB–cttA–scaE ) is conserved in two R. flavefaciens strains (17 and FD-1). Sequence analysis revealed a high mosaic conservation of the intergenic regions in the two strains that contrasted sharply with the divergence of the structural sca gene sequences. Based on the conserved intergenic regions, we designed PCR primers in order to examine the sca gene cluster in additional R. flavefaciens strains (C94, B34b, C1a and JM1). Using these conserved and/or degenerate primers, the scaC, scaA and scaB genes were amplified in all six strains, while the entire sca gene cluster and the proximal genes cttA and scaE were successfully amplified in four of the strains (17, FD-1, C94 and JM1). The sequencing of scaA and scaC genes in all the strains yielded additional insight into the variability of the structural genes with regard to the number and type of cohesin modules contained in a conserved molecular skeleton. Moreover, the scaC gene, being short and variable, appears to be a promising functional phylotyping target for metagenomic population studies of R. flavefaciens in the rumen as a function of the individual host animal.  相似文献   

16.
The attachment of 14C-choline-labelled mixed rumen protozoa to barley straw in vitro was not significantly affected when bacteria prepared from rumen fluid were added to the incubation mixture. There was similarly little effect on protozoal attachment when the straw had already been colonized by a bacterial population for 24 h. In contrast, it was deduced from measurements of enzyme activities associated with straw that bacterial attachment was reduced if protozoa were present. Bacteria that had colonized the straw for 25 h beforehand were less susceptible to predation by protozoa.  相似文献   

17.
A mixed inoculum of cellulolytic rumen bacteria depressed straw degradation by a mixed culture of cellulolytic fungi grown in the presence of Methanobrevibacter smithii. The inhibitory effect appeared to be caused by Ruminococcus albus strain JI and R. flavefaciens strain 007. Ruminococcus albus strain J1 also depressed straw degradation by the fungi, but R. albus strain SY3 and three strains of Bacteroides (Fibrobacter) succinogenes tested showed little or no inhibitory activity. It seems that some ruminococci show competitive or antagonistic activity towards certain rumen fungi.  相似文献   

18.
Summary.  Programmed plant cell death is a widespread phenomenon resulting in the formation of xylem vessels, dissected leaf forms, and aerenchyma. We demonstrate here that some characteristics of programmed cell death can also be observed during the cellular response to biotic and abiotic stress when plant tissue is ingested by grazing ruminants. Furthermore, the onset and progression of plant cell death processes may influence the proteolytic rate in the rumen. This is important because rapid proteolysis of plant proteins in ruminants is a major cause of the inefficient conversion of plant to animal protein resulting in the release of environmental N pollutants. Although rumen proteolysis is widely believed to be mediated by proteases from rumen microorganisms, proteolysis and cell death occurred concurrently in clover leaves incubated in vitro under rumenlike conditions (maintained anaerobically at 39 °C) but in the absence of a rumen microbial population. Under rumenlike conditions, both red and white clover cells showed progressive loss of DNA, but this was only associated with fragmentation in white clover. Cell death was indicated by increased ionic leakage and the appearance of terminal deoxynucleotidyl transferase-mediated dUTP-nick-end-labelled nuclei. Foliar protein decreased to 50% of the initial values after 3 h incubation in white clover and after 4 h in red clover, while no decrease was observed in ambient (25 °C, aerobic) incubations. In white clover, decreased foliar protein coincided with an increased number of protease isoforms. Received June 24, 2002; accepted August 15, 2002; published online March 11, 2003  相似文献   

19.
Competitive PCR assays were developed for the enumeration of the rumen cellulolytic bacterial species: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. The assays, targeting species-specific regions of 16S rDNA, were evaluated using DNA from pure culture and rumen digesta spiked with the relevant cellulolytic species. Minimum detection levels for F. succinogenes, R. albus and R. flavefaciens were 1-10 cells in pure culture and 10(3-4) cells per ml in mixed culture. The assays were reproducible and 11-13% inter- and intra-assay variations were observed. Enumeration of the cellulolytic species in the rumen and alimentary tract of sheep found F. succinogenes dominant (10(7) per ml of rumen digesta) compared to the Ruminococcus spp. (10(4-6) per ml). The population size of the three species did not change after the proportion of dietary alfalfa hay was increased. All three species were detected in the rumen, omasum, caecum, colon and rectum. Numbers of the cellulolytic species at these sites varied within and between animals.  相似文献   

20.
The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi   总被引:3,自引:0,他引:3  
J. KOPEČNÝ, B. HODROVÁ AND C. S. STEWART. 1996. The polycentric anaerobic fungus Orpinomyces joyonii A4 was cultivated on microcrystalline cellulose alone and in association with the rumen chitinolytic bacterium Clostridium sp. strain ChK5, which shows strong phenotypic similarity to Clostridium tertium . The presence of strain ChK5 significantly depressed the solubilization of microcrystalline cellulose, the production of short-chain fatty acids (SCFA) and the release of endoglucanase by the fungus. Co-culture of the monocentric anaerobic fungus Neocallimastix frontalis strain RE1, Neocallimastix sp. strain G-1 and Caecomyces sp. strain SC2 with strain ChK5 also resulted in depressed fungal cellulolysis. Cell-free supernatant fluids from strain ChK5 inhibited the release of reducing sugars from carboxymethylcellulose by cell-free supernatant fluids from O. joyonii strain A4. Strain 007 of the cellulolytic anaerobe Ruminococcus flavefaciens was also shown to produce small amounts of soluble products upon incubation with colloidal chitin. Mixtures of culture supernates from this bacterium and from O. joyonii strain A4 showed cellulase activity that was less than that of the component cultures. It is suggested that the ability of some rumen bacteria to hydrolyse or transform chitin may be an important factor in the interactions between bacteria and fungi in the rumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号