首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To analyse spcrmatophore function, various aspects of the mating behaviour (e.g. spermatophore mass, duration of sperm transfer, mating frequency) were compared in two subspecies of the bushcricket P. veluchianus. Body mass was significantly different in both subspecies and had a strong effect on spermatophore mass, resulting in a large difference in absolute and relative (percentage of male body mass) spermatophore mass in both subspecies. After copulation the small P. v. minor spermatophores were consumed much faster by the female than the larger ones of P. v. veluchianus. The time necessary for sperm transfer from the spermatophore to the female spermatheca was much shorter in the subspecies with small spermatophores than in that with large spermatophores, and in both subspecies similar to the time required to consume the spermatophores. Mating frequency varied also between the subspecies and was murh higher in P. v. minor than in P. v. veluchianus. Differences in body mass between the two subspecies therefore resulted in changes in several aspects of mating behaviour. However, despite large differences in the mass of the spermatophore, its main function seems to be to ensure sperm transfer. This can be concluded from the similarity between the duration of sperm transfer and the time period necessary for spermatophore consumption in each of the subspecies. The spermatophore is thus considered to be male mating effort.  相似文献   

2.
The costs of spermatogenesis constrain sperm expenditure when sperm production per day is limited. Thus, males are challenged to allocate available resources to sperm production and other life history functions. However, this prevailing assumption is not applicable to species in which spermatogenesis becomes quiescent during the breeding season. Males of these species prepare large quantities of sperm before the breeding season. Among these species, constraints on ejaculates have been intensively investigated in salamanders that deposit spermatophores. Although it is predicted that sperm expenditure should not be limited because of abundantly prepared sperm, spermatophore deposition is often limited during the breeding season when vas deferens are full of sperm. We tested a hypothesis regarding limited spermatophore deposition by measuring sperm quantity and volume of spermatophores sequentially deposited by male eastern newts Notophthalmus viridescens. A male newt rarely deposits more than three spermatophores per mating. If depletion of non‐sperm components of spermatophores limits spermatophore deposition, we predicted that spermatophore volume decreases while sperm quantity remains constant as a male deposits more spermatophores. Alternatively, some regulative mechanisms allow a limited portion of available sperm to be expended per mating, in which sperm quantity is predicted to decrease while the spermatophore volume remains constant. Finally, depletion of non‐sperm components may regulate sperm expenditure, which predicted that both spermatophore volume and sperm quantity decrease. We found that both sperm quantity and the spermatophore volume decreased as a male deposited more spermatophores during a single mating. Sperm expenditure was constrained without the costs involved in active spermatogenesis, and depletion of non‐sperm components likely regulate sperm quantity loaded in spermatophores. In dissociated spermatogenesis, constrained sperm expenditure do not mean that costly spermatogenesis is directly limiting male mating capacity but rather suggest that the evolution of physiological mechanisms regulating sperm expenditure per mating maximizes male reproductive success.  相似文献   

3.
During mating, male bushcrickets transfer a spermatophore that consists of a sperm-containing ampulla and a product of the accessory glands, the spermatophylax, which females directly ingest. In the present study, we demonstrate male spermatophore allocation in the bushcricket Poecilimon zimmeri . Males of this species show condition-dependent spermatophore investment. This investment depended upon the age at first mating of males, with older individuals transferring larger spermatophores than younger ones of the same body mass. Independently of age, heavier males transfer larger spermatophores, but the size of males (as measured by femur length) was not a good predictor. Heavier males allocate a lower proportion of their mass to spermatophores and reach their maximal investment point earlier than less heavy males. Spermatophylax production levelled off to a species specific maximum earlier than that of sperm investment (measured as ampulla mass), suggesting that males face high levels of sperm competition.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 354–360.  相似文献   

4.
Success in sperm competition is of fundamental importance to males, yet little is known about what factors determine paternity. Theory predicts that males producing high sperm numbers have an advantage in sperm competition. Large spermatophore size (the sperm containing package) also correlates with paternity in some species, but the relative importance of spermatophore size and sperm numbers has remained unexplored. Males of the small white butterfly, Pieris rapae (Lepidoptera: Pieridae), produce large nutritious spermatophores on their first mating. On their second mating, spermatophores are only about half the size of the first, but with almost twice the sperm number. We manipulated male mating history to examine the effect of spermatophore size and sperm numbers on male fertilization success. Overall, paternity shows either first male or, more frequently, second male sperm precedence. Previously mated males have significantly higher fertilization success in competition with males mating for the first time, strongly suggesting that high sperm number is advantageous in sperm competition. Male size also affects paternity with relatively larger males having higher fertilization success. This may indicate that spermatophore size influences paternity, because in virgin males spermatophore size correlates with male size. The paternity of an individual male is also inversely correlated with the mass of his spermatophore remains dissected out of the female. This suggests that females may influence paternity by affecting the rate of spermatophore drainage. Although the possibility of female postcopulatory choice remains to be explored, these results clearly show that males maximize their fertilization success by increasing the number of sperm in their second mating.  相似文献   

5.
During mating, many male insects transfer sperm packaged within a spermatophore that is produced by reproductive accessory glands. While spermatophores have been documented in some North American fireflies (Coleoptera: Lampyridae), little is known concerning either production or transfer of spermatophores in the aquatic Luciola fireflies widespread throughout Asia. We investigated this process in Japanese Luciola lateralis and L. cruciata by feeding males rhodamine B, a fluorescent dye known to stain spermatophore precursors. We then mated males with virgin females, and dissected pairs at various timepoints after mating. In both of these Luciola species, spermatophores were produced by three pairs of male accessory glands and were transferred to females during the second stage of copulation. Male spermatophores were highly fluorescent, and were covered by a thin outer sheath; a narrow tube leading from an internal sperm-containing sac fit precisely into the female spermathecal duct, presumably for sperm delivery. Both L. lateralis and L. cruciata females have a spherical spermatheca as well as a highly extensible gland where spermatophore breakdown commences by 24h post-mating. Similar reproductive anatomy was observed for both sexes in Luciola ficta from Taiwan. These results suggest that nuptial gifts may play an important role in many firefly-mating systems.  相似文献   

6.
Males of the sorghum plant bug, Stenotus rubrovittatus (Matsumura) (Heteroptera: Miridae), transfer a spermatophore to females during copulation. After a 1‐day interval between the first and second copulation, males transferred both sperm and a spermatophore to females during the second copulation. However, when male mating interval was <1 h, they transferred sperm but no spermatophores to females during the second copulation. Therefore, the male mating interval probably produces two types of mated females, those with and those without a spermatophore. Mated females of S. rubrovittatus do not remate for at least 3 days after mating, even when courted, and lay more eggs than virgin females at the beginning of the oviposition period. The effects of spermatophores on female sexual receptivity and fecundity were examined using mated females with or without a spermatophore. Only one of the 40 (2.5%) mated females with a spermatophore remated, whereas 10 of the 26 (38.5%) without a spermatophore remated. Furthermore, mated females with a spermatophore laid more eggs than those without a spermatophore. These results suggest that spermatophores participate in reducing female sexual receptivity and enhancing female fecundity in S. rubrovittatus.  相似文献   

7.
Water mites of the genus Arrenurus vary in male sexual dimorphism and in sperm transfer behaviour. Although it is a very large genus (≈800 spp.), mating behaviour has been described for only a few species. Here sperm transfer behaviour is described for the first time in a North American species, Arrenurus manubriator. Behaviour patterns can be divided into pre-pairing (readiness posture and cauda presentation), pre-deposition (high vertical jerking, low vertical shaking, striking/stroking and slow lateral waving), spermatophore deposition, sperm translocation, post-deposition (striking/stroking. slow lateral waving, 'tick-rock', shuttling, violent shaking), and separation. Males deposited 8–21 spermatophores in a mating. Pairs remained together for up to 31/2h. Possible adaptive functions of male courtship behaviour are discussed, including the hypothesis that male intromittant organs evolved in Arrenurus to circumvent female choice.  相似文献   

8.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

9.
Eriophyoid females store sperm either asymmetrically in one spermatheca, or symmetrically in both spermathecae. Previous studies have suggested that species in which females store sperm asymmetrically pick up sperm from only one spermatophore, while those with symmetrical sperm storage pick up sperm from two or more spermatophores during their lifetime. The aim of this study was to examine spermatophore visitation behaviour and symmetry of sperm storage in Aculops allotrichus from the black locust tree and Cecidophyopsis hendersoni from the yucca. This would indicate monandry or polyandry in these species. In both eriophyoids, the spermatophore visitation consisted of three phases: mounting, lying on the spermatophore and dismounting. Aculops allotrichus stored sperm asymmetrically. However, nearly one-third of the observed females visited two spermatophores, rather than only one in their lives. When A. allotrichus females visited two spermatophores they spent a similar amount of time at the first and at the second visitation. Also, the times of visitation of the first of the two spermatophores and the single spermatophore in a female lifetime did not differ significantly. This would suggest that apart from monandry, double insemination also occurs in this species. By contrast, C. hendersoni females were polyandrous. They stored sperm symmetrically and visited several spermatophores, on average 1.54 (max 6) per day, and up to 33 spermatophores in their lives. The benefits of repeated spermatophore visitation and the possible mechanisms of sperm storage in both species are discussed.  相似文献   

10.
The transfer of spermatophore contents derived from testes during mating greatly stimulates ovipositional activity for long periods of time in the house cricket, Acheta domesticus (L.). Since prostaglandins appear to play a role in reproduction in several insect species, and since prostaglandin synthesis enzymes occur in cricket testes and spermatophores, we investigated the role of prostaglandins in the regulation of long-term oviposition. Inactivation of prostaglandin synthesis enzymes in males or females using specific inhibitors failed to block mating-induced increases in egg laying. However, males lacking sperm because of X-irradiation were unable to induce oviposition even though they mated, transferred spermatophores, and had high levels of prostaglandins in both testes and spermatophores. X-irradiation was also used to generate males with nonfunctional sperm. Females mated to these animals readily laid eggs, which failed to develop. It appeared that sperm or a factor associated with sperm induced long-term oviposition in female house crickets. Prostaglandin synthesis enzymes transferred from the male to females may have other roles in the female, for example, in sperm maintenance in the spermatheca. Previous observations strongly suggest that prostaglandins induce egg laying behavior and activity; they may be synthesized by female enzymes that are regulated by male-derived factors.  相似文献   

11.
In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males’ contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food‐deprivation, and is not influenced by developmental food‐limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult‐resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior.  相似文献   

12.
Male costs of mating are now thought to be widespread. The two-spot ladybird beetle (Adalia bipunctata) has been the focus of many studies of mating and sexual selection, yet the costs of mating for males are unknown. The mating system of A. bipunctata involves a spermatophore nuptial gift ingested by females after copulation. In this study, we investigate the cost to males of mating and of transferring spermatophores in terms of lifespan, ejaculate production and depletion of nutritional reserves. We found that males faced a strong trade-off between mating and survival, with males that were randomly assigned to mate a single time experiencing a 53% reduction in post-mating lifespan compared to non-mating males. This is among the most severe survival costs of a single mating yet reported. However, spermatophore transfer did not impact male survival. Instead, the costs associated with spermatophores appeared as a reduced ability to transfer spermatophores in successive matings. Furthermore, males ingested more food following spermatophore transfer than after matings without spermatophores, suggesting that spermatophore transfer depletes male nutritional reserves. This is to our knowledge the first report of an effect of variation in copulatory behaviour on male foraging behaviour. Overall, our study highlights the advantages of assessing mating costs using multiple currencies, and suggests that male A. bipunctata should exhibit mate choice.  相似文献   

13.
Under dissociated sperm transfer, (non-pairing) males deposit spermatophores on a substrate, while females seek spermatophores and pick up sperm on their own. Spermatophore expenditures of non-pairing males should be high, due to the increased uncertainty of sperm uptake by a female. In this study I examined spermatophore expenditures in two eriophyoid species that differed in the degree of dissociation between sexes: (1) Aculus fockeui (Nalepa and Trouessart) males rarely visit quiescent female nymphs (QFNs), and mostly deposit spermatophores all over the leaves, whereas (2) Aculops allotrichus (Nalepa) males guard QFNs for many hours and deposit several spermatophores beside them. Males of both species were collected from the field and tested in solitude. Aculus fockeui males deposited on average 19.1 spermatophores per day, whereas A. allotrichus deposited only 3.6 spermatophores per day, and had a very large coefficient of variation. Males and spermatophores of A. allotrichus were significantly smaller and contained less sperm than those of A. fockeui. In both eriophyoids, spermatophore size was fitted to the size of female genitalia and the height of females. The ratio between the diameter of spermatophore head and the width of a female genital coverflap was 0.6, whereas the ratio between the female leg and the length of spermatophore stalk was 0.5. Several factors could be responsible for the discrepancy in spermatophore expenditures between species. Among other factors, the effects of male size, male reproductive strategy and female genitalia size on spermatophore output and size of spermatophores are discussed.  相似文献   

14.
The leafhoppers, Bothrogonia ferruginea (Homoptera: Cicadellidae), eclose to adults in summer with immature reproductive organs. The adults live for 10 months including a hibernation of 4 months. Overwintered females mate multiply in spring. Eggs develop rapidly and are laid continuously in this mating period. Males produce sperm-bundles in which sperm are attached in a row to a rope-like hyaline material, and transfer them to the female via a large spermatophore that is placed in her bursa copulatrix. After mating, sperm are separated and removed to a spermatheca for storage prior to fertilization, but the sperm-binding material (trypsin degradable proteins) and the spermatophore disappear in the bursa and an enlarged portion of the genital duct. An injection of rhodamine B-dyed proteins into the female bursa with a microsyringe results in the production of intensely fluorescent eggs developing in the ovaries. This suggests that females could incorporate proteinaceous material derived from male spermatophores and/or sperm-binding material into their oocytes.  相似文献   

15.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

16.
Males of many species adjust their reproductive behaviour according to the perceived risk of sperm competition. Although this phenomenon is widespread in insects and other animals, the mechanisms that allow mates to assess sperm competition levels remain largely unexplored. In this study, we analysed the mating behaviour of pairs of Tenebrio molitor beetles under three odour treatments representing increasing levels of sperm competition risk (SCR) and sperm competition intensity (SCI). Copula duration and male and female post-copulatory behaviour varied significantly with odour treatment. Both copula duration and post-copulatory associations (PCAs) increased significantly in odour treatments reflecting high male density. To our knowledge, this is the first study to report that insects may assess the actual density of potential competitors at the time of mating, a cue to SCR and SCI, on the basis of chemical cues. In T. molitor, males inhibit sperm release from the spermatophore of a rival male when remating takes place at short intervals. We show that, when sperm competition levels are high, PCAs increase female remating interval just above that necessary to prevent spermatophore inhibition by rival males. This finding strongly suggests that strategic male behaviour plays a 'spermatophore guarding' role in this species. Although common in insects with external spermatophore transfer, spermatophore guarding is not expected in species with rapid ejaculate transfer and internal spermatophore delivery. Our results reveal that spermatophore guarding may evolve, even under these circumstances, as an evolutionary response to short-term spermatophore inhibition or displacement mechanisms.  相似文献   

17.
Mating durations of copepods were found to differ significantly between fishless high-altitude waters and lowland lakes containing fish. In lowland species the whole mating process was completed within a few minutes, but it averaged over an hour in high-altitude species. Alpine copepods showed a prolonged post-copulatory association between mates, during which the male clasped the female for an extended period after spermatophore transfer, while in lowland species males abandoned their partner immediately after copulation. Prolonged associations also occurred after transfer of spermatophores to heterospecific females with shorter conspecific mating duration, suggesting that male interests largely dictate the time spent in tandem. The differences observed may be adaptations to environments with different predation pressure, as pairs in tandem are more conspicuous and less reactive than single animals. We argue that differences in mating behavior and mating duration evolved under sexual versus natural selection, reflecting trade-offs between enhancement of fertilization success and reduction of vulnerability to visual predation. In fishless mountain lakes with high intrasexual competition, guarding males can reduce the risk of spermatophore displacement or the risk that the female will accept sperm from rival males without increased risk of being eaten, thereby maximizing paternity. Populations from fishless alpine lakes further differed from lowland species by exhibiting higher female/male size dimorphism and more intense pigmentation. While these traits vary between populations according to predation pressure, mating duration appears to be more species-specific.  相似文献   

18.
Many species of lepidopterans supplement their nectar diet with foods rich in nitrogen and minerals, which are present only in trace amounts in nectar. We examined the effect of adult diet on mating behaviour and spermatophore characteristics in male Bicyclus anynana (Butler, 1879) butterflies, which feed on rotten fruits as adults. We found little effect of adult diet on male reproduction in terms of mating rate and sperm production, although males fed on fruit produced larger spermatophores on their first mating compared to males fed sugar only. We also examined how males allocate sperm across matings. Males ejaculate larger spermatophores during their first mating, and produce spermatophores containing decreasingly fewer non-fertile sperm with number of matings performed. Males that produced more non-fertile sperm on their first mating had reduced lifespan possibly indicating a trade-off between sperm production and adult longevity. It is suggested that adult diet has little affect on male ejaculate production and males feed on fruit to supplement their energetic carbon requirements.  相似文献   

19.
Under sex dissociated sperm transfer, females seek spermatophores and pick up sperm without male assistance. In several species males adjust spermatophore deposition rate to the presence of conspecifics. It is not known, however, which factors could favor such elasticity in non-pairing males. In this paper, we compare male response towards conspecifics between the sex dissociated eriophyoid mites Aculus fockeui (Nalepa and Trouessart) and Aculops allotrichus (Nalepa). The species differ significantly in male reproductive strategies and, consequently, the intensity of male–male-competition. Aculus fockeui males deposit spematophores all over the leaves and occasionally leave single spermatophores beside quiescent female nymphs (QFNs). In contrast, A. allotrichus males guard QFNs and encircle them with spermatophores. In this study, males of both species deposited spermatophores close to and apart from the rival spermatophores. Aculops allotrichus males had similar spermatophore output whether they were kept alone or in a group of seven males. They did not change spermatophore output in the presence of five rival spermatophores, a QFN or a QFN and varying number of rivals, either. In contrast, A. fockeui males increased spermatophore output in the presence of rival spermatophores or when on the arena with a QFN the male number increased to eight males. They did not respond, however, to the presence of a QFN and one rival or a QFN alone. The possible effect of the species-specific intensity of male–male competition, population density, the availability of receptive females and the rate of spermatophore output on the flexibility of eriophyoid spermatophore deposition is discussed.  相似文献   

20.
In species where males and females interact during mating, the role of females in sexual selection cannot always be demonstrated unambiguously. Here we present a model system to study female choice for mates. Orchesella cinca is a soil-dwelling hexapod with indirect sperm transfer. Females and males do not interact physically for reproduction. We gave females the choice between spermatophores produced by two different males. Paternity analysis based on microsatellite variation revealed that offspring in one clutch were sired by one male only. Direct observations showed that after a female has taken up a spermatophore, the female's receptivity to further spermatophore uptake seem to end. Our results imply that the female is in full control of paternity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号