首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA segment encoding the Ca2+-binding protein, parvalbumin, was isolated with the use of antibodies, from a lambda gtll expression library of Xenopus laevis tadpole poly(A)+ RNAs. The bacterially expressed beta-galactosidase-parvalbumin fusion protein of one lambda recombinant shows high affinity 45Ca2+ binding. The sequence of the tadpole parvalbumin is highly similar to previously characterized beta-parvalbumins of other organisms. Data from protein and RNA blotting experiments demonstrate that parvalbumin is absent in oocytes, eggs, and early staged embryos, and only becomes expressed during embryogenesis at the time of myogenesis. The protein can be detected in individual developing muscle cells and in muscle fibers of tadpole tail muscles. A simple method is also described for the isolation of neural tube-notochord-somite complexes from Xenopus embryos.  相似文献   

2.
3.
4.
Fetal rat skeletal muscles express a troponin T (TnT) isoform similar to the TnT isoform expressed in the embryonic heart with respect to electrophoretic mobility and immunoreactivity with cardiac TnT-specific monoclonal antibodies. Immunoblotting analyses reveal that both the embryonic and the adult isoforms of cardiac TnT are transiently expressed during the neonatal stages. In addition, other TnT species, different from both cardiac TnTs and from the TnT isoforms expressed in adult muscles, are present in skeletal muscles during the first two postnatal weeks. By immunocytochemistry, cardiac TnT is detectable at the somitic stage and throughout embryonic and fetal development, and disappears during the first weeks after birth, persisting exclusively in the bag fibers of the muscle spindles. Cardiac TnT is re-expressed in regenerating muscle fibers following a cold injury and in mature muscle fibers after denervation. Developmental regulation of this TnT variant is not coordinated with that of the embryonic myosin heavy chain with respect to timing of disappearance and cellular distribution. No obligatory correlation between the two proteins is likewise found in regenerating and denervated muscles.  相似文献   

5.
Differentiation of cultured myogenic progenitor cells (satellite cells and mononucleated myoblasts) derived from hindlimb muscles of rat embryos and newborn animals was studied. Immunocytochemical methods and PCR analysis revealed expression of heavy myosin chains at the earliest stages of myogenesis (in mononucleated myoblasts). Expression of the gene encoding the embryonic form of myosin and a low level of expression of the gene encoding perinatal myosin in cultured progenitor cells derived from embryonic muscles was detected by PCR. Cells derived from muscles of newborn animals also expressed these two myosin forms, though at a lower level. The progenitor cells derived from muscles of rat embryos and newborn animals were found to express myosin 2a, which is characteristic of fast-twitch definitive muscle fibers.  相似文献   

6.
In this study, the protein expression profile of extensor digitorum longous (EDL) and Soleus (SOL) muscles, representing fast- and slow-twitch skeletal muscles, respectively, was established using high resolution two-dimensional electrophoresis (2-DE). One protein spot was found uniquely expressed in EDL muscle. N-terminal sequence analysis identified the protein as parvalbumin. Parvalbumin is a high affinity calcium binding protein that regulates muscle contraction and relaxation. Our experiments revealed that parvalbumin expression in EDL muscle was down-regulated during aging. In addition, high-intensity exercise could reverse this age-related change. Soleus muscles do not normally express parvalbumin, but high-intensity exercise could ectopically induce its expression in both young and old SOL muscles. We have also confirmed our 2-DE findings by immunohistochemistry on muscle sections. Our results suggest that high-intensity training could be used to improve muscle functions during aging because parvalbumin play an important role in regulating skeletal muscle contraction and relaxation.  相似文献   

7.
Summary In anuran tadpole tails, the myelinated motor nerve fibers branch in the myoseptum to innervate both red and white muscle fibers at, or near, their ends. There are no significant ultrastructural differences between the nerve endings of the two types of muscle fibers.Intense acetylcholinesterase reaction product was observed in synaptic clefts and junctional folds, as well as in transverse tubules. As metamorphosis proceeded, the junctional folds of the nerve endings disappeared, however, acetylcholinesterase reaction product was still observed in the synaptic clefts. As muscle fibers began to degenerate, nerve endings began to separate from them. However, after nerve endings were completely separated from the surfaces, degenerated muscle fibers, synaptic and cored vesicles were still well preserved although no acetylcholinesterase reaction product was found. It seems clear that the mechanism of the muscle degeneration in the tadpole tail during metamorphosis is not the result of the degeneration of its nerve endings.  相似文献   

8.
9.
In contrast to many vertebrates, the ventral body wall muscles and limb muscles of Xenopus develop at different times. The ventral body wall forms in the tadpole, while limb (appendicular) muscles form during metamorphosis to the adult frog. In organisms that have been examined thus far, a conserved mechanism has been shown to control migratory muscle precursor specification, migration, and differentiation. Here, we show that the process of ventral body wall formation in Xenopus laevis is similar to hypaxial muscle development in chickens and mice. Cells specified for the migratory lineage display an upregulation of pax3 in the ventro-lateral region of the somite. These pax3-positive cells migrate ventrally, away from the somite, and undergo terminal differentiation with the expression of myf-5, followed by myoD. Several other genes are selectively expressed in the migrating muscle precursor population, including neural cell adhesion molecule (NCAM), Xenopus kit related kinase (Xkrk1), and Xenopus SRY box 5 (sox5). We have also found that muscle precursor migration is highly coordinated with the migration of neural crest-derived melanophores. However, by extirpating neural crest at an early stage and allowing embryos to develop, we determined that muscle precursor migration is not dependent on physical or genetic interaction with melanophores.  相似文献   

10.
Actin Degradation in the Metamorphosing Bullfrog Tadpole Tail   总被引:1,自引:1,他引:0  
Degradation of tail muscle proteins was investigated during metamorphosis of Rana catesbeiana , tadpole. Regressing tail muscle contained actomyosin which was comparable to that of non-regressing tail muscle in its physico-chemical character, althouth the actomyosin content of the former tissue decreased as compared to the latter. However, when muscle proteins were extracted in the SDS-containing medium (TSM) and analyzed by SDS-polyacrylamide gel electrophoresis, we found that the protein band corresponding to actin disappeared completely during the late climax stage of metamorphosis. Detailed studies on this phenomenon showed that the apparent absence of actin on SDS-polyacrylamide gel electrophoresis was dependent upon the metamorphic stages of the tadpoles investigated. When TSM extract from the premetamorphic tadpole tail muscles which contained actin was incubated with the same extract from tadpoles of the climax stage, actin derived from premetamorphic tadpole disappeared on gel electrophoresis, indicating that tail muscle tissues of the climax stages contain the actin-degrading enzyme. Characterization of the enzyme was performed with a crude extract using actin prepared from rabbit thigh muscle as a substrate. Actin degrading activity showed incubation time- and temperature-dependency and the activity decreased gradually when the extract was preheated at increasing temperatures with the complete inactivation at 100°C. The major degradation products of actin hydrolysis by the enzyme had a Mr=28,000 and 14,000 which indicated the enzyme splits actin at a specific point. The activity had an optimum pH of 7.5 and was inhibited by leupeptin and iodoacetate and required the presence of a thiol reagent.  相似文献   

11.
Members of the heat shock protein 90 (Hsp90) family of molecular chaperones play important roles in allowing a select group of intracellular signaling molecules reach and maintain functionally active conformations. We have previously shown that hsp90alpha gene expression in early zebrafish embryos is restricted to a subgroup of paraxial-mesoderm derived somitic cells prior to muscle formation and that the gene is downregulated in mature trunk and tail muscle fibers. Here we have compared the expression of the hsp90alpha gene to muscle regulatory genes during development of slow and fast muscle fibers in normal embryos and in embryos carrying mutations which affect somitic muscle formation. We show that hsp90alpha is first expressed early during the development of slow somitic muscle progenitors shortly following myoD activation and at a point prior to or co-incident with the expression of other known muscle regulatory genes. Expression of hsp90alpha is also activated in the midline of flh mutants when these cells switch from a notochord to a muscle fate. Conversely, expression is not detectable in cells of the paraxial mesoderm lineage which fail to converge in spt mutants and which do not activate expression of other muscle specific marker genes. Finally, expression of hsp90alpha is downregulated in slow muscle fibers by 24 h of age but becomes detectable in the later developing fast fibers at this time. Thus, hsp90alpha is expressed in developing muscle progenitors during short temporal and spatial windows of both slow and fast fiber lineages in the zebrafish somite.  相似文献   

12.
Agnathan lampreys retain ancestral characteristics of vertebrates in the morphology of skeletal muscles derived from two mesodermal regions: trunk myotomes and unsegmented head mesoderm. During lamprey development, some populations of myoblasts migrate via pathways that differ from those of gnathostomes. To investigate the evolution of skeletal muscle differentiation in vertebrates, we characterize multiple contractile protein genes expressed in the muscle cells of the Japanese lamprey, Lethenteron japonicum. Lamprey actin gene LjMA2, and myosin heavy chain (MyHC) genes LjMyHC1 and LjMyHC2 are all expressed in the developing skeletal muscle cells of early embryos. However, LjMyHC1 and LjMyHC2 are expressed only in cells originating from myotomes, while LjMA2 is expressed in both myotomal and head musculature. Thus, in lampreys, myotomes and head mesoderm differ in the use of genes encoding contractile protein isoforms. Phylogenetic tree analyses including lamprey MyHCs suggest that the variety of muscle MyHC isoforms in different skeletal muscles may correspond to the morphological complexity of skeletal muscles of different vertebrate species. Another lamprey actin gene LjMA1 is likely to be the first smooth muscle actin gene isolated from non-tetrapods. We conclude that, in vertebrate evolution, the different regulatory systems for striated and smooth muscle-specific genes may have been established before the agnathan/gnathostome divergence.  相似文献   

13.
In ascidians, the events of metamorphosis transform the non-feeding, mobile tadpole larva into a filter-feeding, fixed juvenile, and the process involves rearrangements of cells, two organs and physiological changes. Differential screening was used to isolate two genes that are not expressed in swimming larvae but are expressed immediately after the initiation of metamorphosis in Ciona intestinalis. One of the genes, Ci-meta1, encodes a polypeptide with a putative secretion signal sequence, 6 epidermal growth factor (EGF)-like repeats and 13 calcium-binding EGF-like repeats. The gene begins to be expressed immediately after the beginning of metamorphosis in the adhesive organ and is likely to be associated with the signal response for metamorphosis. Another gene named Ci-meta2 encodes a protein with a putative secretion signal and three thrombospondin type-1 repeats. Ci-meta2 gene expression begins at the larval stage and is upregulated in the metamorphosing juveniles. Ci-meta2 expression is found in three regions; the adhesive organ which is also associated with settlement, the neck region between the trunk and the tail of the larva which is associated with tail resorption, and dorsal regions of the trunk which correspond to the location of the siphon primordium. This gene may be involved in the dynamic arrangement of cells during ascidian metamorphosis.  相似文献   

14.
15.
An alloantiserum produced against Xenopus MHC class I antigens has been used to distinguish different erythrocyte populations at metamorphosis. By analysis using a fluorescence-activated cell sorter (FACS) analyzer, tadpole (stage 55) and adult erythrocytes have distinct volume differences and tadpole cells have no MHC antigens on the cell surface. Both tadpole and adult erythrocytes express a "mature erythrocyte" antigen marker, recognized by its monoclonal antibody (F1F6). During metamorphosis, immature erythrocytes, at various stages of differentiation, which express adult levels of cell-surface MHC antigens by 12 days after tail resorption, are found in the bloodstream. These immature cells are biosynthetically active, produce adult hemoglobin, and mature by 60 days after the completion of metamorphosis. Percoll gradient-density fractionation has shown that all of the cells in the new erythrocyte series express adult levels of MHC antigens but there is only a gradual increase in the amount of "mature erythrocyte" antigen. Tadpole erythrocytes, which are biosynthetically active during larval stages, produce small amounts of surface MHC antigens before the metamorphic climax and then become metabolically inactive. They are completely cleared from the circulation by 60 days after metamorphosis. Erythrocytes from tadpoles arrested in their development for long periods of time express intermediate levels of MHC antigens, suggesting a "leaky" expression of these molecules in the tadpole cells. The most abundant erythrocyte cell-surface proteins from tadpoles and adults, as judged by two-dimensional gel electrophoresis, are very different.  相似文献   

16.
In this study radioimmunoassay, immunohistochemistry, Northern blot analysis, and a gel overlay technique have been used to examine the level, subcellular distribution, and potential target proteins of the S100 family of calcium-modulated proteins in adult and developing rat skeletal muscles. Adult rat muscles contained high levels of S100 proteins but the particular form present was dependent on the muscle type: cardiac muscle contained exclusively S100 alpha, slow-twitch skeletal muscle fibers contained predominantly S100 alpha, vascular smooth muscle contained both S100 alpha and S100 beta, and fast-twitch skeletal muscle fibers contained low but detectable levels of S100 alpha and S100 beta. While the distribution of S100 mRNAs paralled the protein distribution in all muscles there was no direct correlation between the mRNA and protein levels in different muscle types, suggesting that S100 protein expression is differentially regulated in different muscle types. Immunohistochemical analysis of the cellular distribution of S100 proteins in adult skeletal muscles revealed that S100 alpha staining was associated with muscle cells, while S100 beta staining was associated with nonmuscle cells. Radioimmunoassays of developing rat skeletal muscles demonstrated that all developing muscles contained low levels of S100 alpha at postnatal day 1 and that as development proceeded the S100 alpha levels increased. In contrast to adult muscle S100 alpha expression was confined to fast-twitch fibers in developing skeletal muscle until postnatal day 21. At postnatal day 1, developing contractile elements were S100 alpha positive, but no staining periodicity was detectable. At postnatal day 21, S100 alpha exhibited the same subcellular localization as seen in the adult: colocalization with the A-band and/or longitudinal sarcoplasmic reticulum. Comparison of the S100 alpha-binding protein profiles in fast- and slow-twitch fibers of various species revealed few, if any, species- or fiber type-specific S100 binding proteins. Isolated sarcoplasmic reticulum fractions and myofibrils contained multiple S100 alpha-binding proteins. The colocalization of S100 alpha and S100 alpha-binding proteins with the contractile apparatus and sarcoplasmic reticulum suggest that S100 alpha may regulate excitation and/or contraction in slow-twitch fibers.  相似文献   

17.
18.
Skeletal muscle in vertebrates is derived from somites, epithelial structures of the paraxial mesoderm, yet many unrelated reports describe the occasional appearance of myogenic cells from tissues of nonsomite origin, suggesting either transdifferentiation or the persistence of a multipotent progenitor. Here, we show that clonable skeletal myogenic cells are present in the embryonic dorsal aorta of mouse embryos. This finding is based on a detailed clonal analysis of different tissue anlagen at various developmental stages. In vitro, these myogenic cells show the same morphology as satellite cells derived from adult skeletal muscle, and express a number of myogenic and endothelial markers. Surprisingly, the latter are also expressed by adult satellite cells. Furthermore, it is possible to clone myogenic cells from limbs of mutant c-Met-/- embryos, which lack appendicular muscles, but have a normal vascular system. Upon transplantation, aorta-derived myogenic cells participate in postnatal muscle growth and regeneration, and fuse with resident satellite cells.The potential of the vascular system to generate skeletal muscle cells may explain observations of nonsomite skeletal myogenesis and raises the possibility that a subset of satellite cells may derive from the vascular system.  相似文献   

19.
Members of the myogenic regulatory gene family, including MyoD, Myf5, Myogenin and MRF4, are specifically expressed in myoblast and skeletal muscle cells and play important roles in regulating skeletal muscle development and growth. They are capable of converting a variety of non-muscle cells into myoblasts and myotubes. To better understand their roles in the development of fish muscles, we have isolated the MyoD genomic genes from gilthead seabream (Sparus aurata), analyzed the genomic structures, patterns of expression and the regulation of muscle-specific expression. We have demonstrated that seabream contain two distinct non-allelic MyoDgenes, MyoD1 and MyoD2. Sequence analysis revealed that these two MyoD genes shared a similar gene structure. Expression studies demonstrated that they exhibited overlapping but distinct patterns of expression in seabream embryos and adult slow and fast muscles. MyoD1 was expressed in adaxial cells that give rise to slow muscles, and lateral somitic cells that give rise to fast muscles. Similarly, MyoD2 was initially expressed in both slow and fast muscle precursors. However, MyoD2 expression gradually disappeared in the adaxial cells of 10- to 15-somite-stage embryos, whereas its expression in fast muscle precursor cells was maintained. In adult skeletal muscles, MyoD1 was expressed in both slow and fast muscles, whereas MyoD2 was specifically expressed in fast muscles. Treating seabream embryos with forskolin, a protein kinase A activator, inhibited MyoD1 expression in adaxial cells, while expression in fast muscle precursors was not affected. Promoter analysis demonstrated that both MyoD1 and MyoD2 promoters could drive green fluorescence protein expression in muscle cells of zebrafish embryos. Together, these data suggest that the two non-allelic MyoD genes are functional in seabream and their expression is regulated differently in fast and slow muscles. Hedgehog signaling is required for induction of MyoDexpression in adaxial cells.  相似文献   

20.
When the tail of the Xenopus laevis tadpole resorbs at the end of metamorphosis, various cell types, including muscle, fibroblasts, skin, and spinal cord, are lost at about the same time. However, feeding frogs with tails can be produced by inhibiting thyroid hormone production at the climax of metamorphosis with the goitrogen methimazole. These tails lose their fast muscle preferentially, showing that the different cell types of the tail have different fates and confirming that more than one cell death program is involved in tail resorption. Both normal and methimazole tails contain "cords," novel structures that consist of two dorsal and two ventral parallel rows of slow muscle bundles joined by collagen fibers that run the length of the tail. The cords persist until the very end of tail resorption, being the last structure to dissolve. When thyroid hormone induces expression of proteolytic enzymes in the notochord sheath, the notochord, a structural rod that runs the length of the tail, begins to buckle, demonstrating that the tail is under tension. When sections of the tail that contain cords are surgically separated from the notochord, they contract in vitro, suggesting that the cords contribute to the tension that augments tail resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号