首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular techniques are currently the leading tools for reconstructing phylogenetic relationships, but our understanding of ancestral, plesiomorphic and apomorphic characters requires the study of the morphology of extant forms for testing these phylogenies and for reconstructing character evolution. This review highlights the potential of soft body morphology for inferring the evolution and phylogeny of the lophotrochozoan phylum Bryozoa. This colonial taxon comprises aquatic coelomate filter‐feeders that dominate many benthic communities, both marine and freshwater. Despite having a similar bauplan, bryozoans are morphologically highly diverse and are represented by three major taxa: Phylactolaemata, Stenolaemata and Gymnolaemata. Recent molecular studies resulted in a comprehensive phylogenetic tree with the Phylactolaemata sister to the remaining two taxa, and Stenolaemata (Cyclostomata) sister to Gymnolaemata. We plotted data of soft tissue morphology onto this phylogeny in order to gain further insights into the origin of morphological novelties and character evolution in the phylum. All three larger clades have morphological apomorphies assignable to the latest molecular phylogeny. Stenolaemata (Cyclostomata) and Gymnolaemata were united as monophyletic Myolaemata because of the apomorphic myoepithelial and triradiate pharynx. One of the main evolutionary changes in bryozoans is a change from a body wall with two well‐developed muscular layers and numerous retractor muscles in Phylactolaemata to a body wall with few specialized muscles and few retractors in the remaining bryozoans. Such a shift probably pre‐dated a body wall calcification that evolved independently at least twice in Bryozoa and resulted in the evolution of various hydrostatic mechanisms for polypide protrusion. In Cyclostomata, body wall calcification was accompanied by a unique detachment of the peritoneum from the epidermis to form the hydrostatic membraneous sac. The digestive tract of the Myolaemata differs from the phylactolaemate condition by a distinct ciliated pylorus not present in phylactolaemates. All bryozoans have a mesodermal funiculus, which is duplicated in Gymnolaemata. A colonial system of integration (CSI) of additional, sometimes branching, funicular cords connecting neighbouring zooids via pores with pore‐cell complexes evolved at least twice in Gymnolaemata. The nervous system in all bryozoans is subepithelial and concentrated at the lophophoral base and the tentacles. Tentacular nerves emerge intertentacularly in Phylactolaemata whereas they partially emanate directly from the cerebral ganglion or the circum‐oral nerve ring in myolaemates. Overall, morphological evidence shows that ancestral forms were small, colonial coelomates with a muscular body wall and a U‐shaped gut with ciliary tentacle crown, and were capable of asexual budding. Coloniality resulted in many novelties including the origin of zooidal polymorphism, an apomorphic landmark trait of the Myolaemata.  相似文献   

2.
3.
Summary In the Bryozoa neither an extreme accentuation nor an extreme denial of the individuality of the zooids in the colonies is in accordance with the observed facts. The brooding organs of the Gymnolaemata have developed independently from the brooding organs of the Phylactolaemata.  相似文献   

4.
Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.  相似文献   

5.
苔藓动物是后生动物中的一个重要类群。然而,和其它主要后生动物类群相比,长期以来对它的系统学研究却相对滞后。其起源,系统发生地位以及与其它后生物门类之间、其内部各高级分类群间的谱系发生关系一直存在争议。一般认为它是介于原口动物和后口动物之间的过渡类群。但是,近年来的分子系统学研究已经证实了它的原口归属。古生物学资料表明,虽然苔藓动物的大多数类群在奥陶纪已经分化出来,但它在寒武纪却缺乏任何化石记录。另外,苔藓动物起源的时间和方式、其内部各类群间的系统发生关系特别是现生类群和化石类群之间的关系等诸多问题的解决,还有待于大量的形态学和不同的分子数据的进一步积累,并结合其地层分布等各种相关资料进行综合研究。  相似文献   

6.

Introduction

Among bryozoans, cyclostome anatomy is the least studied by modern methods. New data on the nervous system fill the gap in our knowledge and make morphological analysis much more fruitful to resolve some questions of bryozoan evolution and phylogeny.

Results

The nervous system of cyclostome Crisia eburnea was studied by transmission electron microscopy and confocal laser scanning microscopy. The cerebral ganglion has an upper concavity and a small inner cavity filled with cilia and microvilli, thus exhibiting features of neuroepithelium. The cerebral ganglion is associated with the circumoral nerve ring, the circumpharyngeal nerve ring, and the outer nerve ring. Each tentacle has six longitudinal neurite bundles. The body wall is innervated by thick paired longitudinal nerves. Circular nerves are associated with atrial sphincter. A membranous sac, cardia, and caecum all have nervous plexus.

Conclusion

The nervous system of the cyclostome C. eburnea combines phylactolaemate and gymnolaemate features. Innervation of tentacles by six neurite bundles is similar of that in Phylactolaemata. The presence of circumpharyngeal nerve ring and outer nerve ring is characteristic of both, Cyclostomata and Gymnolaemata. The structure of the cerebral ganglion may be regarded as a result of transformation of hypothetical ancestral neuroepithelium. Primitive cerebral ganglion and combination of nerve plexus and cords in the nervous system of C. eburnea allows to suggest that the nerve system topography of C. eburnea may represent an ancestral state of nervous system organization in Bryozoa. Several scenarios describing evolution of the cerebral ganglion in different bryozoan groups are proposed.
  相似文献   

7.
8.
《Journal of morphology》2017,278(5):718-733
Tentacles are the main food‐gathering organs of bryozoans. The most common design is a hollow tube of extracellular matrix (ECM), covered with ten columns of epithelial cells on the outside, and a coelothelium on the inside. Nerves follow the ECM, going between the bases of some epidermal cells. The tentacle musculature includes two bundles formed by myoepithelial cells of the coelothelium. The tentacles of freshwater (phylactolaemate) bryozoans, however, differ somewhat in structure from those of marine bryozoans. Here, we describe the tentacles of three species of phylactolaemates, comparing them to gymnolaemates and stenolaemates. Phylactolaemate tentacles tend to be longer, and with more voluminous coeloms. The composition of the frontal cell row and the number of frontal nerves is variable in freshwater bryozoans, but constant in marine groups. Abfrontal cells form a continuous row in Phylactolaemata, but occur intermittently in other two classes. Phylactolaemata lack the microvillar cuticle reported in Gymnolaemata. Abfrontal sensory tufts are always composed of pairs of mono‐ and/or biciliated cells. This arrangement differs from individual abfrontal ciliary cells of other bryozoans: monociliated in Stenolaemata and monociliated and multiciliated ones in Gymnolaemata. In all three groups, however, ciliated abfrontal cells probably serve as mechanoreceptors. We confirm previously described phylactolemate traits: an unusual arrangement of two‐layered coelothelium lining the lateral sides of the tentacle and oral slits in the intertentacular membrane. As previously reported, tentacle movements involved in feeding differ between bryozoan groups, with phylactolaemates tending to have slower movements than both gymnolaemates and stenolaemates, and a narrower behavioral repertoire than gymnolaemates. The morphological and ultrastructural differences between the freshwater species we studied and marine bryozoans may be related to these functional differences. Muscle organization, tentacle and coelom size, and degree of confluence between tentacle and lophophore coeloms probably account for much of the observed behavioral variability.  相似文献   

9.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

10.
The present study considers 88 bryozoan species occurring in freshwater: 69 phylactolaemate and 19 gymnolaemate species. Roughly 49% of these species are confined to one zoogeographical region. The cosmopolitan status of species like Fredericella sultana, Plumatella repens or P. emarginata has to be reconsidered. Among the Phylactolaemata, which are phylogenetically older than the Gymnolaemata, the gelatinous species (Lophopodidae, Pectinatellidae, Cristatellidae) are more primitive than the branching tubular species (Plumatellidae, Fredericellidae). Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

11.
Despite the embryological and anatomical disparities present among lophotrochozoan phyla, there are morphological similarities in the cellular arrangements of ciliated cells used for propulsion among the nonfeeding larval forms of kamptozoans, nemerteans, annelids, mollusks, and bryozoans. Evaluating whether these similarities are the result of convergent selective pressures or a shared (deep) evolutionary history is hindered by the paucity of detailed cellular information from multiple systematic groups from lesser-known, and perhaps, basal evolutionary phyla such as the Bryozoa. Here, I compare the ciliary fields and musculature among the major morphological grades of marine bryozoan larvae using light microscopy, SEM, and confocal imaging techniques. Sampling effort focused on six species from systematic groups with few published accounts, but an additional four well-known species were also reevaluated. Review of the main larval types among species of bryozoans and these new data show that, within select systematic groups of marine bryozoans, there is some conservation of the cellular arrangement of ciliary fields and larval musculature. However, there is much more morphological diversity in these structures than previously documented, especially among nonfeeding ctenostome larval types. This structural and functional diversification reflects species differences in the orientation of the apical disc during swimming and crawling behaviors, modification of the presumptive juvenile tissues, elongation of larval forms in the aboral-oral axis, maximizing the surface area of cell types with propulsive cilia, and the simplification of ciliary fields and musculature within particular lineages due to evolutionary loss. Considering the embryological origins and functional plasticity of ciliated cells within bryozoan larvae, it is probable that the morphological similarities shared between the coronal cells of bryozoan larvae and the prototrochal cells of trochozoans are the result of convergent functional solutions to swimming in the plankton. However, this does not rule out cell specification pathways shared by more closely related spiralian phyla. Overall, among the morphological grades of larval bryozoans, the structural variation and arrangement of the main cell groups responsible for ciliary propulsion have been evolutionarily decoupled from the more divergent modifications of larval musculature. The structure of larval ciliary fields reflects the functional demands of swimming and substrate exploration behaviors before metamorphosis, but this is in contrast to the morphology of larval musculature and presumptive juvenile tissues that are linked to macroevolutionary differences in morphogenetic movements during metamorphosis.  相似文献   

12.
We present the most comprehensive molecular phylogeny of bryozoans to date. Our concatenated alignment of two nuclear ribosomal and five mitochondrial genes includes 95 taxa and 13,292 nucleotide sites, of which 8297 were included. The number of new sequences generated during this project are for each gene:ssrDNA (32), lsrDNA (22), rrnL (38), rrnS (35), cox1 (37), cox3 (34), and cytb (44). Our multi-gene analysis provides a largely stable topology across the phylum. The major groups were unambiguously resolved as (Phylactolaemata (Cyclostomata (Ctenostomata, Cheilostomata))), with Ctenostomata paraphyletic. Within Phylactolaemata, (Stephanellidae, Lophopodidae) form the earliest divergent clade. Fredericellidae is not resolved as a monophyletic family and forms a clade together with Plumatellidae, Cristatellidae and Pectinatellidae, with the latter two as sister taxa. Hyalinella and Gelatinella nest within the genus Plumatella. Cyclostome taxa fall into three major clades: i. (Favosipora (Plagioecia, Rectangulata)); ii. (Entalophoroecia ((Diplosolen, Cardioecia) (Frondipora, Cancellata))); and iii. (Articulata ((Annectocyma, Heteroporidae) (Tubulipora (Tennysonia, Idmidronea)))), with suborders Tubuliporina and Cerioporina, and family Plagioeciidae each being polyphyletic. Ctenostomata is composed of three paraphyletic clades to the inclusion of Cheilostomata: ((Alcyonidium, Flustrellidra) (Paludicella (Anguinella, Triticella)) (Hislopia (Bowerbankia, Amathia)) Cheilostomata); Flustrellidra nests within the genus Alcyonidium, and Amathia nests within the genus Bowerbankia. Suborders Carnosa and Stolonifera are not monophyletic. Within the cheilostomes, Malacostega is paraphyletic to the inclusion of all other cheilostomes. Conopeum is the most early divergent cheilostome, forming the sister group to ((Malacostega, Scrupariina, Inovicellina) ((Hippothoomorpha, Flustrina) (Lepraliomorpha, Umbonulomorpha))); Flustrina is paraphyletic to the inclusion of the hippothoomorphs; neither Lepraliomorpha nor Umbonulomorpha is monophyletic. Ascophorans are polyphyletic, with hippothoomorphs grouping separately from lepraliomorphs and umbonulomorphs; no cribrimorphs were included in the analysis. Results are discussed in the light of molecular and morphological evidence. Ancestral state reconstruction of larval strategy in Gymnolaemata revealed planktotrophy and lecithotrophy as equally parsimonious solutions for the ancestral condition. More comprehensive taxon sampling is expected to clarify this result. We discuss the extent of non-bryozoan contaminant sequences deposited in GenBank and their impact on the reconstruction of metazoan phylogenies and those of bryozoan interrelationships.  相似文献   

13.
苔藓动物18S rRNA基因的分子系统发生初探   总被引:4,自引:0,他引:4  
本文对我国沿海较为常见的8种唇口目苔藓动物的18SrRNA基因进行了PCR扩增和序列测定。结合已知的其它苔藓动物(包括内肛动物和外肛动物)以及腕足动物和帚虫的相应序列,运用分子系统学方法,研究苔藓动物门的系统发生关系,结果表明,外肛动物和内肛动物构成苔藓动物分子系统树中的二大平行支;本文测定的大室膜孔苔虫与Giribet等测定的膜孔苔虫在系统树中的位置间隔较远。结果也支持外肛动物包含被唇纲和裸唇纲两大类群的形态划分,而关于裸唇纲特别是唇口目内部的系统发生关系。分子数据的分析结果和形态分类之间的分歧有待于进一步研究。  相似文献   

14.
Although only a small fraction of the estimated 6000 extant bryozoan species has been analysed in a molecular phylogenetic context, the resultant trees have increased our understanding of the interrelationships between major bryozoan groups, as well as between bryozoans and other metazoan phyla. Molecular systematic analyses have failed to recover the Lophophorata as a monophyletic clade until recently, when phylogenomic data placed the Brachiopoda as sister to a clade formed by Phoronida + Bryozoa. Among bryozoans, class Phylactolaemata has been shown to be the sister group of Gymnolaemata + Stenolaemata, corroborating earlier anatomical inferences. Despite persistent claims, there are no unequivocal bryozoans of Cambrian age: the oldest bryozoans are stenolaemates from the Tremadocian of China. Stenolaemates underwent a major radiation during the Ordovician, but the relationships between the six orders involved are poorly understood, mostly because the simple and plastic skeletons of stenolaemates make phylogenetic analyses difficult. Bryozoans were hard‐hit by the mass extinction/s in the late Permian and it was not until the Middle Jurassic that they began to rediversify, initially through the cyclostome stenolaemates. The most successful post‐Palaeozoic order (Cheilostomata) evolved a calcareous skeleton de novo from a soft‐bodied ancestor in the Late Jurassic, maintained a low diversity until the mid‐Cretaceous and then began to radiate explosively. A remarkable range of morphological structures in the form of highly modified zooidal polymorphs, or non‐zooidal or intrazooidal modular elements, is postulated to have evolved repeatedly in this group. Crucially, many of these structures have been linked to micropredator protection and can be interpreted as key traits linked to the diversification of cheilostomes.  相似文献   

15.
A recent molecular phylogeny of the mammalian order Carnivora implied large body size as the ancestral condition for the caniform subclade Arctoidea using the distribution of species mean body sizes among living taxa. "Extant taxa-only" approaches such as these discount character state observations for fossil members of living clades and completely ignore data from extinct lineages. To more rigorously reconstruct body sizes of ancestral forms within the Caniformia, body size and first appearance data were collected for 149 extant and 367 extinct taxa. Body sizes were reconstructed for four ancestral nodes using weighted squared-change parsimony on log-transformed body mass data. Reconstructions based on extant taxa alone favored large body sizes (on the order of 10 to 50 kg) for the last common ancestors of both the Caniformia and Arctoidea. In contrast, reconstructions incorporating fossil data support small body sizes (< 5 kg) for the ancestors of those clades. When the temporal information associated with fossil data was discarded, body size reconstructions became ambiguous, demonstrating that incorporating both character state and temporal information from fossil taxa unambiguously supports a small ancestral body size, thereby falsifying hypotheses derived from extant taxa alone. Body size reconstructions for Caniformia, Arctoidea, and Musteloidea were not sensitive to potential errors introduced by uncertainty in the position of extinct lineages relative to the molecular topology, or to missing body size data for extinct members of an entire major clade (the aquatic Pinnipedia). Incorporating character state observations and temporal information from the fossil record into hypothesis testing has a significant impact on the ability to reconstruct ancestral characters and constrains the range of potential hypotheses of character evolution. Fossil data here provide the evidence to reliably document trends of both increasing and decreasing body size in several caniform clades. More generally, including fossils in such analyses incorporates evidence of directional trends, thereby yielding more reliable ancestral character state reconstructions.  相似文献   

16.
1. We studied relationships between different forms of reproduction and local variation in the reproductive state of colonies of a common freshwater bryozoan Cristatella mucedo Cuvier (Bryozoa: Phylactolaemata). Four sampling locations in central Finland, including both lotic and lentic habitats, were sampled by scuba diving. The traits studied were occurrence of sexual larvae, colony size, number of resting stages (statoblasts) and number of zooids. 2. While 76.9% of the sampled colonies carried statoblasts at the time of sampling, only 4.5% of the colonies were brooding sexual larvae. Most of the colonies were relatively small with a mean colony size of 16.6 mm. 3. In colonies brooding larvae, the number of statoblasts was positively correlated with the number of larvae. We did not detect a colony size threshold for sexual reproduction or formation of statoblasts. Colonies carrying statoblasts had a lower number of zooids per unit dry weight. 4. We found significant variation in reproductive traits of colonies among the sampling locations, and among lotic and lentic habitats. The observed phenotypic differences may reflect broadly distributed, phenotypically plastic clones. Differences in clonal composition of local populations cannot, however, be ruled out and factors that may provide clonal diversity are discussed.  相似文献   

17.
Sun M  Shen X  Liu H  Liu X  Wu Z  Liu B 《Marine Genomics》2011,4(3):159-165
Mitochondrial genomes play a significant role in the reconstruction of phylogenetic relationships within metazoans. There are still many controversies concerning the phylogenetic position of the phylum Bryozoa. In this research, we have finished the complete mitochondrial genome of one bryozoan (Tubulipora flabellaris), which is the first representative from the class Stenolaemata. The complete mitochondrial genome of T. flabellaris is 13,763 bp in length and contains 36 genes, which lacks the atp8 gene in contrast to the typical metazoan mitochondrial genomes. Gene arrangement comparisons indicate that the mitochondrial genome of T. flabellaris has unique gene order when compared with other metazoans. The four known bryozoans complete mitochondrial genomes also have very different gene arrangements, indicates that bryozoan mitochondrial genomes have experienced drastic rearrangements. To investigate the phylogenetic relationship of Bryozoa, phylogenetic analyses based on amino acid sequences of 11 protein coding genes (excluding atp6 and atp8) from 26 metazoan complete mitochondrial genomes were made utilizing Maximum Likelihood (ML) and Bayesian methods, respectively. The results indicate the monopoly of Lophotrochozoa and a close relationship between Chaetognatha and Bryozoa. However, more evidences are needed to clarify the relationship between two groups. Lophophorate appeared to be polyphyletic according to our analyses. Meanwhile, neither analysis supports close relationship between Branchiopod and Phoronida. Four bryozoans form a clade and the relationship among them is T. flabellaris + (F. hispida + (B. neritina + W. subtorquata)), which is in coincidence with traditional classification system.  相似文献   

18.
Å. Franzén 《Zoomorphology》1984,104(3):140-146
Summary Differentiation of spermatids to mature spermatozoa in the bryozoan Tubulipora liliacea was studied by transmission electron microscopy. The spermatozoon of Tubulipora is of a filiform, modified type, and has evolved from the primitive type as an adaptation to a specialized biology of fertilization. The head of the spermatozoon consists of a small, conical acrosome capping an elongated, cylindrical, anteriorly tapering nucleus. A basal invagination in the nucleus contains the proximal portion of the axoneme and a dense attachment matrix. The flagellar axoneme has the typical 9+2 structure. Four elongated rodshaped mitochondria with typical cristae surround the axoneme in the cylindrical middle piece. Granular electron-dense material is accumulated in the form of four columns alternating with four long cylindrical mitochondria. The mitochondrial middle piece is separated externally from the tail region by an involution of the plasma membrane. The tail region contains a cytoplasmic sheath with accessory fibers surrounding the axoneme. Nine outer, coarse fibers extend posteriorly paralleling the nine doublets of the axoneme. The coarse fibers develop from electron-dense plate-like structures associated with the doublets of the axoneme. A characteristic feature in spermiogenesis is that spermatozoa develop in tetrads. There seem to be significant differences in spermatozoan ultrastructure between the three bryozoan classes Stenolaemata, Gymnolaemata, and Phylactolaemata. The differences indicate different lines of evolution of fertilization biology in these groups.Abbreviations used in the figures a acrosome - av acrosomal vesicles - ax axoneme - c coarse fiber - d electron dense rod - m mitochondrion - mp middle piece - Scale bars=0.5 m - mt microtubule - n nucleus - ne nuclear envelope - p nuclear protrusion - pm plasma membrane - t tail  相似文献   

19.
In contrast to other Bryozoa, members of the subtaxon Phylactolaemata bear a subepithelial cerebral ganglion that resembles a hollow vesicle rather than being compact. In older studies this ganglion was said to originate by an invagination of the pharyngeal epithelium. Unfortunately, documentation for this is fragmentary. In chordates the central nervous system also arises by an invagination-like process, but this mode is uncommon among invertebrate phyla. As a first attempt to gather more data about this phenomenon, cerebral ganglia in two phylactolaemate species, Fredericella sultana and Plumatella emarginata, were examined at the ultrastructural level. In both species the ganglion bears a small central lumen. The ganglionic cells are organized in the form of a neuroepithelium. They are polarized and interconnected by adherens junctions on their apical sides and reside on a basal lamina. The nerve cell somata are directed towards the central lumen, whereas the majority of nervous processes are distributed basally. Orientation of the neuroepithelial cells can be best explained by the possibility that they develop by invagination. A comparison with potential outgroups reveals that a neuroepithelial ganglion is at least derived. Since, however, a reliable phylogenetic system of the Bryozoa is missing, a decision on whether such a ganglion is apomorphic for Bryozoa or evolved within this taxon can hardly be made.  相似文献   

20.
Adachi, N., Ezaki, Y. & Liu, J. 2011: The oldest bryozoan reefs: a unique Early Ordovician skeletal framework construction. Lethaia, Vol. 45, pp. 14–23. The oldest bryozoan reefs occur in the Lower Ordovician (late Tremadocian) Fenhsiang Formation of the Three Gorges area, South China. These reefs show a unique type of bryozoan (Nekhorosheviella) framework, and were constructed as follows: the first stage involved colonization by lithistid sponges, which acted as a baffler to trap sediments, providing bryozoans with a stable substrate for attachment. The bryozoans then grew as an encruser on the surfaces of sponges, showing a preferential downwards and lateral growth within the sponge scaffolding to avoid biological and physical disturbance. Finally, these biotic combinations among skeletal organisms formed a rigid, three‐dimensional skeletal framework. This mode of bryozoan growth in association with lithistid sponges is remarkable and unique in its growth direction, and the appearance of such reefs, just prior to the widespread development of skeletal‐dominated reefs as part of the Great Ordovician Biodiversification Event, provides an excellent example of the earliest attempts by skeletal organisms to form frameworks by themselves. This find significantly enhances our understanding of the initial stages of skeletal‐dominated reef evolution and the ensuing development of reefs during the Middle–Late Ordovician. □Bryozoa, Early Ordovician, lithistid sponge, Ordovician radiation, reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号