首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Both the ordered and disordered solvent networks of vitamin B12 coenzyme crystal hydrate have been generated by Monte Carlo simulation techniques. Several different potential functions have been use to model both water-water and water-solute (i.e., water-coenzyme) interactions. The results have been analysed in terms of the structural properties of the water networks, such as mean water oxygen and hydrogen positions, coordination of each water molecule, and maxima of probability density maps in all four asymmetric units of this crystal.The following results were found: (I) Within each asymmetric unit only one hydrogen bonding network was predicted although there were several hydrogen atom positions for any one solvent molecule (defined as maxima in probability density). (II) Reasonable agreement was obtained between predicted and experimental positions in the ordered solvent region, independent of the potential function used. (III) The positions of the calculated probability density maxima for the disordered channel region were different in different asymmetric units; this led to different simulated hydrogen bond networks which were not always consistent with the experimentally determined alternative (lower occupancy) sites.The results suggest that it is advisable to simulate more than one asymmetric unit if one wishes to look at disorder in the solvent regions. Probability density maps were qualitatively very useful for picturing these disordered regions. However, there were no significant differences between quantitative results predicted using either average atomic positions or maxima of the probability density distributions.Problems in quantifying agreement between experimental and predicted disordered solvent networks are discussed. The potential which included hydrogen atoms explicitly (EMPWI) seemed to give the best overall agreement, mainly because it was successful in predicting the unusually short hydrogen bonds which are found in this crystal.  相似文献   

2.
T Earnest  E Fauman  C S Craik  R Stroud 《Proteins》1991,10(3):171-187
The structure of a rat trypsin mutant [S195C] at a temperature of 120 K has been refined to a crystallographic R factor of 17.4% between 12.0 and 1.59 A and is compared with the structure of the D102N mutant at 295 K. A reduction in the unit cell dimensions in going from room temperature to low temperature is accompanied by a decrease in molecular surface area and radius of gyration. The overall structure remains similar to that at room temperature. The attainable resolution appears to be improved due to the decrease in the fall off of intensities with resolution [reduction of the temperature factor]. This decreases the uncertainty in the atomic positions and allows the localization of more protein atoms and solvent molecules in the low temperature map. The largest differences between the two models occur at residues with higher than average temperature factors. Several features can be localized in the solvent region of the 120 K map that are not seen in the 295 K map. These include several more water molecules as well as an interstitial sulfate ion and two interstitial benzamidine molecules.  相似文献   

3.
Four mutants of bovine pancreatic trypsin inhibitor (BPTI) with replacements in the rigid core result in the creation of deep crevices on the surface of the protein. Other than crevices at the site of the mutation, few other differences are observed in the crystal structures of wild-type BPTI and the mutants F22A, Y23A, N43G, and F45A. These mutants are highly destabilized relative to wild type (WT). The differences between WT and mutants in the free energy change associated with cooperative folding/unfolding, delta delta G0 (WT-->mut), have been measured by calorimetry, and they are in good agreement with delta delta G0(WT-->mut) values from hydrogen exchange rates. For F22A the change in free energy difference is about 1.7 kcal/mol at 25 degrees C; for the other three mutants it is in the range of 5-7 kcal/mol at 25 degrees C. The experimental delta delta G0(WT-->mut) values of F22A, Y23A, and F45A are reasonably well accounted for as the sum of two terms: the difference in transfer free energy change, and a contribution from exposure to solvent of new surface (Eriksson, A.E., et al., 1992, Science 255, 178-183), if the recently corrected transfer free energies and surface hydrophobicities (De Young, L. & Dill, K., 1990, J. Phys. Chem. 94, 801-809; Sharp, K.A., et al., 1991a, Science 252, 106-109) are used and only nonpolar surface is taken into account. In N43G, three protein-protein hydrogen bonds are replaced by protein-water hydrogen bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The crystal structure of the extracellular bacterial serine protease α-lytic protease (αLP) has been solved at 0.83 Å resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 Nδ1 participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(±0.06) Å from the His Nδ1. The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be ∼8.8 when a sulfate ion occupies the active site. This 0.83 Å structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In αLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of αLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.  相似文献   

5.
The fibrous structure of both primary and secondary type cortical bone is determined. The three dimensional fibrous orientation is expressed quantitatively by pole figures of the (002) diffraction. Whilst both types of bone exhibit one major axis of fibrous orientation which is aligned on average with the long axis of the femur, primary type bone exhibits a planar orientation which is consistent with a fibrous spread within the laminations but not from one lamination to the next. Secondary type bone exhibits a degree of preferred orientation with rotational symmetry about the main fibre axis.  相似文献   

6.
7.
8.
A crystal structure of the serine protease, mouse glandular kallikrein 13 (mGK-13) has been determined at 2.6-A resolution. This enzyme, isolated from the mouse submandibular gland, is also known as prorenin-converting enzyme and cleaves submandibular gland Ren-2 prorenin to yield active renin. The mGK-13 structure is similar to other members of the mammalian serine protease family, having five conserved disulfide bonds and an active site located in the cleft between two beta-barrel domains. The mGK-13 structure reveals for the first time an ordered kallikrein loop conformation containing a short 3(10) helix. This loop is disordered in the related porcine pancreatic kallikrein and rat submandibular tonin structures. The kallikrein loop is in close spatial proximity to the active site and is also involved in a dimeric arrangement of mGK-13. The catalytic specificity of mGK-13 for Ren-2 prorenin was studied by modeling a prorenin-derived peptide into the active site of mGK-13. This model emphasizes two electronegative substrate specificity pockets on the mGK-13 surface, which could accommodate the dibasic P2 and P1 residues at the site of prorenin cleavage by mGK-13.  相似文献   

9.
Two high-pressure polymorphs of sulfuric acid monohydrate (oxonium hydrogensulfate) have been obtained at ambient temperature by crystallisation at high pressure from the liquid at 1.3 GPa (form III) and by direct compression of the ambient-pressure form I first to 1.26 GPa (form II) and then to 1.72 GPa (form III). The structure of form III was solved by single crystal X-ray diffraction and this structure was used as the basis for the refinement of hydrogen positions using high-pressure neutron powder diffraction data. Form III crystallises in the orthorhombic crystal system at 1.97 GPa, and features parallel chains of hydrogensulfate ions linked by oxonium ions to form a three-dimensional hydrogen-bonded network. On further compression to 3.05 GPa, the direction of maximum compressibility is found to be along the a-axis and is associated with the shortening of a hydrogen bond between a hydrogensulfate ion and an oxonium ion. The structure of form II remains elusive although at ambient temperature it is stable (or metastable) at pressures as low as 0.42 GPa, perhaps indicating that it could be recoverable to ambient-pressure at low temperature.  相似文献   

10.
Mesotrypsin displays unusual resistance to inhibition by polypeptide trypsin inhibitors and cleaves some such inhibitors as substrates, despite a high degree of conservation with other mammalian trypsins. Substitution of Arg for the generally conserved Gly-193 has been implicated as a critical determinant of the unusual behavior of mesotrypsin toward protein protease inhibitors. Another relatively conserved residue near the trypsin active site, Tyr-39, is substituted by Ser-39 in mesotrypsin. Tyr-39, but not Ser-39, forms a hydrogen bond with the main chain amide nitrogen of the P4′ residue of a bound protease inhibitor. To investigate the role of the Tyr-39 H-bond in trypsin-inhibitor interactions, we reciprocally mutated position 39 in mesotrypsin and human cationic trypsin to Tyr-39 and Ser-39, respectively. We assessed inhibition constants and cleavage rates of canonical protease inhibitors bovine pancreatic trypsin inhibitor (BPTI) and the amyloid precursor protein Kunitz protease inhibitor domain by mesotrypsin and cationic trypsin variants, finding that the presence of Ser-39 relative to Tyr-39 results in a 4- to 13-fold poorer binding affinity and a 2- to 18-fold increase in cleavage rate. We also report the crystal structure of the mesotrypsin-S39Y•BPTI complex, in which we observe an H-bond between Tyr-39 OH and BPTI Ile-19 N. Our results indicate that the presence of Ser-39 in mesotrypsin, and corresponding absence of a single H-bond to the inhibitor backbone, makes a small but significant functional contribution to the resistance of mesotrypsin to inhibition and the ability of mesotrypsin to proteolyze inhibitors.  相似文献   

11.
The molecular forces that stabilize membrane protein structure are poorly understood. To investigate these forces we introduced alanine substitutions at 24 positions in the B helix of bacteriorhodopsin and examined their effects on structure and stability. Although most of the results can be rationalized in terms of the folded structure, there are a number of surprises. (1) We find a remarkably high frequency of stabilizing mutations (17%), indicating that membrane proteins are not highly optimized for stability. (2) Helix B is kinked, with the kink centered around Pro50. The P50A mutation has no effect on stability, however, and a crystal structure reveals that the helix remains bent, indicating that tertiary contacts dominate in the distortion of this helix. (3) We find that the protein is stabilized by about 1kcal/mol for every 38A(2) of surface area buried, which is quite similar to soluble proteins in spite of their dramatically different environments. (4) We find little energetic difference, on average, in the burial of apolar surface or polar surface area, implying that van der Waals packing is the dominant force that drives membrane protein folding.  相似文献   

12.
The Serratia marcescens serine protease (SSP) is one of the extracellular enzymes secreted from this Gram-negative bacterium. When the ssp gene, which encodes a SSP precursor (preproSSP) composed of a typical NH2-terminal signal peptide, a mature enzyme domain, and a large COOH-terminal pro-region, is expressed in Escherichia coli, the mature protease is excreted through the outer membrane into the medium. The COOH-terminal pro-region, which is integrated into the outer membrane, provides the essential function for the export of the mature protein across the outer membrane. This is a very simple pathway, in contrast to the general secretory pathway exemplified by the secretion of a pullulanase from Klebsiella oxytoca, in which many separately encoded accessory proteins are required for the transport through the outer membrane. Moreover, the NH2-terminal region of 71 amino acid residues of the COOH-terminal pro-sequence plays an essential role, as an “intramolecular chaperone,” in the folding of the mature enzyme in the medium. In addition to ssp, the S. marcescens strain contains two ssp homologues encoding proteins similar to SSP in amino acid sequence and size, but with no protease activity. Characterization of the homologue proteins and chimeric proteins between the homologues and SSP, all of which are produced in E. coli, has shown that they are membrane proteins that are localized in the outer membrane in the same manner as for SSP. By use of the COOH-terminal domain of SSP, pseudoazurin was exported to the cell surface of E. coli, which proves the usefulness of the SSP secretory system in the export of foreign proteins across the outer membrane.  相似文献   

13.
Thirty five years ago mesotrypsin was first isolated from the human pancreas. It was described as a minor trypsin isoform with the remarkable property of near total resistance to biological trypsin inhibitors. Another unusual feature of mesotrypsin was discovered later, when it was found that mesotrypsin has defective affinity toward many protein substrates of other trypsins. As the younger sibling of the two major trypsins secreted by the pancreas, cationic and the anionic trypsin, it has been speculated to represent an evolutionary waste with no apparent function. We know now that mesotrypsin is functionally very different from the other trypsins, with novel substrate specificity that hints at distinct physiological functions. Recently, evidence has begun to emerge implicating mesotrypsin in direct involvement in cancer progression. This review will explore the biochemical characteristics of mesotrypsin and structural insights into its specificity, function, and inhibition.  相似文献   

14.
Using a test set of 13 small, compact proteins, we demonstrate that a remarkably simple protocol can capture native topology from secondary structure information alone, in the absence of long-range interactions. It has been a long-standing open question whether such information is sufficient to determine a protein's fold. Indeed, even the far simpler problem of reconstructing the three-dimensional structure of a protein from its exact backbone torsion angles has remained a difficult challenge owing to the small, but cumulative, deviations from ideality in backbone planarity, which, if ignored, cause large errors in structure. As a familiar example, a small change in an elbow angle causes a large displacement at the end of your arm; the longer the arm, the larger the displacement. Here, correct secondary structure assignments (alpha-helix, beta-strand, beta-turn, polyproline II, coil) were used to constrain polypeptide backbone chains devoid of side chains, and the most stable folded conformations were determined, using Monte Carlo simulation. Just three terms were used to assess stability: molecular compaction, steric exclusion, and hydrogen bonding. For nine of the 13 proteins, this protocol restricts the main chain to a surprisingly small number of energetically favorable topologies, with the native one prominent among them.  相似文献   

15.
Human kallikreins are serine proteases that comprise a recently identified large and closely related 15-member family. The kallikreins include both regulatory- and degradative-type proteases, impacting a variety of physiological processes including regulation of blood pressure, neuronal health, and the inflammatory response. While the function of the majority of the kallikreins remains to be elucidated, two members are useful biomarkers for prostate cancer and several others are potentially useful biomarkers for breast cancer, Alzheimer's, and Parkinson's disease. Human tissue kallikrein (human K1) is the best functionally characterized member of this family, and is known to play an important role in blood pressure regulation. As part of this function, human K1 exhibits unique dual-substrate specificity in hydrolyzing low molecular weight kininogen between both Arg-Ser and Met-Lys sequences. We report the X-ray crystal structure of mature, active recombinant human apo K1 at 1.70 A resolution. The active site exhibits structural features intermediate between that of apo and pro forms of known kallikrein structures. The S2 to S2' pockets demonstrate a variety of conformational changes in comparison to the porcine homolog of K1 in complex with peptide inhibitors, including the displacement of an extensive solvent network. These results indicate that the binding of a peptide substrate contributes to a structural rearrangement of the active-site Ser 195 resulting in a catalytically competent juxtaposition with the active-site His 57. The solvent networks within the S1 and S1' pockets suggest how the Arg-Ser and Met-Lys dual substrate specificity of human K1 is accommodated.  相似文献   

16.
As proteins fold, a progressive structuring, immobilization and eventual exclusion of water surrounding backbone hydrogen bonds takes place. This process turns hydrogen bonds into major determinants of the folding pathway and compensates for the penalty of desolvation of the backbone polar groups. Taken as an average over all hydrogen bonds in a native fold, this extent of protection is found to be nearly ubiquitous. It is dynamically crucial, determining a constraint in the long-time limit behavior of coarse-grained ab initio simulations. Furthermore, an examination of one of the longest available (1micros) all-atom simulations with explicit solvent reveals that this average extent of protection is a constant of motion for the folding trajectory. We propose how such a stabilization is best achieved by clustering five hydrophobes around the backbone hydrogen bonds, an arrangement that yields the optimal stabilization. Our results support and clarify the view that hydrophobic surface burial should be commensurate with hydrogen-bond formation and enable us to define a basic desolvation motif inherent to structure and folding dynamics.  相似文献   

17.
Physical principles determining the protein structure and protein folding are reviewed: (i) the molecular theory of protein secondary structure and the method of its prediction based on this theory; (ii) the existence of a limited set of thermodynamically favourable folding patterns of α- and β-regions in a compact globule which does not depend on the details of the amino acid sequence; (iii) the moderns approaches to the prediction of the folding patterns of α- and β-regions in concrete proteins; (iv) experimental approaches to the mechanism of protein folding. The review reflects theoretical and experimental works of the author and his collaborators as well as those of other groups.  相似文献   

18.
Known sequence motifs containing key glycine residues can drive the homo-oligomerization of transmembrane helices. To find other motifs, a randomized library of transmembrane interfaces was generated in which glycine was omitted. The TOXCAT system, which measures transmembrane helix association in the Escherichia coli inner membrane, was used to select high-affinity homo-oligomerizing sequences in this library. The two most frequently occurring motifs were SxxSSxxT and SxxxSSxxT. Isosteric mutations of any one of the serine and threonine residues to non-polar residues abolished oligomerization, indicating that the interaction between these positions is specific and requires an extended motif of serine and threonine hydroxyl groups. Computational modeling of these sequences produced several chemically plausible structures that contain multiple hydrogen bonds between the serine and threonine residues. While single serine or threonine side-chains do not appear to promote helix association, motifs can drive strong and specific association through a cooperative network of interhelical hydrogen bonds.  相似文献   

19.
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D2O. For DPPC, additional contrast data were obtained with deuterated analogs DPPC_d62, DPPC_d13, and DPPC_d9. For the analysis, we developed a model that is based on volume probability distributions and their spatial conservation. The model's design was guided and tested by a DOPC molecular dynamics simulation. The model consistently captures the salient features found in both electron and neutron scattering density profiles. A key result of the analysis is the molecular surface area, A. For DPPC at 50°C A = 63.0 Å2, whereas for DOPC at 30°C A = 67.4 Å2, with estimated uncertainties of 1 Å2. Although A for DPPC agrees with a recently reported value obtained solely from the analysis of x-ray scattering data, A for DOPC is almost 10% smaller. This improved method for determining lipid areas helps to reconcile long-standing differences in the values of lipid areas obtained from stand-alone x-ray and neutron scattering experiments and poses new challenges for molecular dynamics simulations.  相似文献   

20.
Bovine trypsinogen and chymotrypsinogen were successfully refolded as the mixed disulfide of glutathione using cysteine as the disulfide interchange catalyst. The native structures were regenerated with yields of 40%-50% at pH 8.6 and 4 degrees C, and the half-time for the refolding was approximately 60-75 min. We then refolded threonine-neochymotrypsinogen, which is a two-chain structure held together by disulfide bonds and produced on cleavage of Tyr 146-Thr 147 in native chymotrypsinogen [Duda CT, Light A, J Biol Chem 257 9866-9871, 1982]. Neochymotrypsinogen was denatured and fully reduced, and the thiols were converted to the mixed disulfide of glutathione. The two polypeptide fragments, representing the amino- and carboxyl-terminal domains, were separated on Sephadex G-75. Mixtures of the polypeptide fragments varying in the ratio of their concentration from 1:5 to 5:1 were refolded with yields of 21-28%. The lack of dependence on the concentration of either fragment and the relatively high yields suggest independent folding of the amino- and carboxyl-terminal domains. When the globular structures of the domains formed, they then interacted with one another and produced the native intermolecular disulfide bridge and the proper geometry of the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号