首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

2.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

3.
An immunosensor based on surface plasmon resonance (SPR) using protein G was developed for the detection of Salmonella typhimurium. A protein G layer was fabricated by binding chemically to self-assembly monolayer (SAM) of 11-mercaptoundecanoic acid (MUA) on gold (Au) surface. The formation of protein G layer on Au surface modified with 11-MUA and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The effect of detergent such as Tween-20 on binding efficiency of antibody and antigen was investigated by SPR. The binding efficiency of antigen to the antibody immobilized on Au surface was improved up to about 85% and 100% by using protein G and Tween-20, respectively. The surface morphology analyses of 11-MUA monolayer on Au substrate, protein G layer on 11-MUA monolayer and antibody layer immobilized on protein G layer were performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. typhimurium using protein G was developed with a detection range of 10(2) to 10(9)CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. typhimurium could be applied to construct other immnosensors or protein chips.  相似文献   

4.
Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia is presented. The specificity of an existing mouse monoclonal antibody (phyt/G1470 mAb) against P. infestans was investigated in plate-trapped antigen ELISA and in subtractive inhibition ELISA. No or only limited cross-reactivity was observed against representatives having air-borne spores from Ascomycetes, Deuteromycetes as well as Basidiomycetes. phyt/G1470 mAb was incorporated in a subtractive inhibition SPR assay, consisting of a pre-incubation of mAb and sporangia, a centrifugation step to remove sporangia-bound phyt/G1470 mAb and quantification of remaining phyt/G1470 mAb by SPR. Good intra- and interday assay variability was observed and the assay had a detection limit of 2.2x10(6) sporangia/ml. Analysis time was 75 min, which is superior to existing P. infestans detection methods.  相似文献   

5.
A surface plasmon resonance (SPR) based immunosensor using self-assembled protein G was developed for the detection of Salmonella paratyphi. In order to endow a solid substrate binding affinity to protein G, the free amine (-NH2) of protein G was substituted into thiol (-SH) using 2-iminothiolane. Thus, self-assembled protein G was fabricated on gold (Au) substrate. The formation of protein G layer on Au surface, and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analysis of the protein G layer on Au surface was performed by atomic force microscope (AFM). Consequently, an immunosensor based on SPR for the detection of S. paratyphi using self-assembled protein G was developed with a detection range of 10(2)-10(7) CFU/ml. The current fabrication technique of a SPR immunosensor for the detection of S. paratyphi could be applied to construct other immnosensors or protein chips.  相似文献   

6.
Immunosensor using surface plasmon resonance (SPR) onto self-assembled protein G layer was developed for the detection of Legionella pneumophila. A self-assembled protein G layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2) and the activation process for chemical binding between free amine (-NH(2)) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of self-assembled protein G layer on Au substrate and the binding of antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analyses of self-assembled protein G layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein G were performed by atomic force microscope (AFM). The immunosensor for detection of L. pneumophila using SPR was developed and its detection limit could find up to 10(5) cells/ml.  相似文献   

7.
In this paper the development of the first direct surface plasmon resonance (SPR) immunoassay for the detection of benzoylecgonine (BZE) is described. Immunosensor chips consisting of a high affinity monoclonal anti-BZE-antibody (anti-BZE-Ab) immobilized at high density to a sensor chip were prepared. First, BZE detection in Hepes buffer was achieved by direct, real time monitoring of the binding between BZE in solution and the surface bound antibody. The detection protocol was based on calibration curves obtained from reaction rate data and end point data analysis of sensorgrams registered after injection of a series of known BZE concentrations over the chips. Moreover, immunosensor accuracy, reproducibility, stability and robustness were tested to demonstrate their good performance as reusable devices. The immunosensor was used for BZE detection in oral fluid (OF) showing that, within 180 s, our immunoassay detects BZE concentrations as low as 4 μg/L in filtered OF-buffer (1:4) samples. This value is remarkably lower than current cut off levels established by the Substance Abuse and Mental Health Services Administration. These results manifest the potential use of this direct SPR immunoassay for the in situ sensitive detection of recent cocaine abuse, of utility in roadside drug OF testing. Moreover, it exemplifies the high potential of direct SPR immunoassays for the rapid, sensitive detection of small molecules in contrast with the more established indirect methods.  相似文献   

8.
The interaction of cells with extracellular matrix, termed cell-matrix adhesions, importantly governs multiple cellular phenomena. Knowledge of the functional dynamics of cell-matrix adhesion could provide critical clues for understanding biological phenomena. We developed surface plasmon resonance imaging ellipsometry (SPRIE) to provide high contrast images of the cell-matrix interface in unlabeled living cells. To improve the contrast and sensitivity, the null-type imaging ellipsometry technique was integrated with an attenuated total reflection coupler. We verified that the imaged area of SPRIE was indeed a cell-matrix adhesion area by confocal microscopy imaging. Using SPRIE, we demonstrated that three different cell types exhibit distinct features of adhesion. SPRIE was applied to diverse biological systems, including during cell division, cell migration, and cell-cell communication. We imaged the cell-matrix anchorage of mitotic cells, providing the first label-free imaging of this interaction to our knowledge. We found that cell-cell communication can alter cell-matrix adhesion, possibly providing direct experimental evidence for cell-cell communication-mediated changes in cell adhesion. We also investigated shear-stress-induced adhesion dynamics in real time. Based on these data, we expect that SPRIE will be a useful methodology for studying the role of cell-matrix adhesion in important biological phenomena.  相似文献   

9.
The analysis of carbaryl in natural water samples was accomplished using a portable immunosensor based on surface plasmon resonance (SPR) technology. The assay was based on a binding inhibition immunoassay format with the analyte derivative covalently immobilized on the sensor surface. An alkanethiol self-assembled monolayer (SAM) was formed onto the gold-coated sensor surface to allow the reusability of the same sensing surface during 220 regeneration cycles. Reproducibility was evaluated by performing three independent assays in triplicate on 3 different days. The batch-assay variability was also calculated using three different gold-coated sensor surfaces. The intra- and inter-day relative standard deviation were 8.6 and 15.3%, respectively, whilst a variation of 7.4% in assay sensitivity was obtained by employing different sensor chips. The lowest detection limit, calculated as the concentration providing a 10% decrease of the blank signal, was of 1.38 microg L(-1). Matrix effects were also evaluated in different water types, showing I50 values (carbaryl concentrations that produced a 50% decrease of the blank signal) within the range of carbaryl standard curves in distilled water (2.78-3.55 microg L(-1)). The carbaryl immunoassay performance was validated with respect to conventional high-performance liquid chromatography-mass spectrometry (HPLC-MS). The correlation between methods was in good agreement (r2 = 0.998, 0.999 and 0.999) for the three types of natural water samples tested. A complete assay cycle, including regeneration, is accomplished in 20 min. All measurements were carried out with the SPR sensor system (beta-SPR) commercialised by the company SENSIA, SL (Spain). The small size and low-time of response of the beta-SPR platform would allow its utilization in real contaminated locations.  相似文献   

10.
An immunosensor for the detection of Vibrio cholerae O1 was developed on the basis of surface plasmon resonance (SPR). A protein G layer was fabricated by means of the chemical coupling between the free amine (-NH2) groups of protein G and the activated carboxyl groups present on a self-assembled monolayer (SAM) consisting of a mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol (molar ratio of 1:2). A monoclonal antibody, which was confirmed to be specific to V. cholera O1 by the Western blotting technique, was immobilized on the protein G layer. The formation of the SAM, the protein G layer and the sequential binding of the antibody against V. cholera O1 were investigated with SPR spectroscopy. As the number of fabricated layers increased, the minimum angle of plasmon resonance was increased accordingly. The target bacteria, V. cholera O1, was measured with the fabricated immunosensor, whose detection range was between 105 and 109 cells/mL.  相似文献   

11.
We developed a localized surface plasmon resonance (LSPR)-based label-free optical biosensor for detection of salbutamol (Sal). Hollow gold nanoparticles (HGNs) which deposited on transparent indium tin oxide (ITO) film coated glass was used to sensing platform. Antibody against Sal was immobilized on HGN surface to recognize the target Sal molecules. Thus, the change of LSPR peak was proportional to the concentration of Sal in the solution. The experimental results demonstrated that the LSPR immunosensor possessed a good sensitivity and a high selectivity for Sal. The detection range for Sal was from 0.05 to 0.8 μg/mL with a correlation coefficient of 0.996. The biosensor was applied for the detection for Sal in spiked animal feed and pork liver samples, and the recoveries were in the range of 97–105 %. Therefore, it is expected that this approach may offer a new method in designing label-free LSPR immunosensor for detection of small molecules.  相似文献   

12.
One of the critical intracellular signal transduction pathways involves the binding of the Grb2 SH2 domain to the phosphotyrosine (pTyr) motifs on growth factor receptors, such as epidermal growth factor receptor (EGFR) and erbB2, leading to downstream activation of the oncogenic Ras signaling pathway. Therefore, the Grb2 SH2 domain has been chosen as our target for the development of potential anticancer agents. As a continuation of our earlier work, herein we report the design and synthesis of new peptide analogs, and their inhibitory effect on the Grb2 SH2 domain using surface plasmon resonance (SPR) technology. These novel agents do not contain phosphotyrosine or phosphotyrosine mimics. Binding interactions between these peptides and the Grb2 SH2 domain were measured and analyzed using a BIAcore X instrument, which provides detailed information on the real-time detection of the binding interaction. The results of this study should provide important information for the further development of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain.  相似文献   

13.
We report an innovative at-line method to monitor concentration of bioactive antibody (i.e., antibody with conserved antigen-binding activity) secreted during bioreactor culture by the use of surface plasmon resonance (SPR)-based biosensor technology. In a first series of experiments, conditions for SPR-based measurements were validated off-line by monitoring bioactive antibody concentration in conditioned medium from 500-ml baffled flask hybridoma cell cultures. A fully automated experimental setup in which the SPR-based biosensor was harnessed to a bioreactor was then used at-line to monitor the concentration of bioactive antibody produced in a 3.5-L bioreactor. Quantitative SPR measurements performed both at-line and off-line were in excellent agreement with quantitative Western blotting followed by densitometry analyses. Thus, our experimental study confirms that SPR biosensors can be applied to at-line quantification of correctly folded proteins that are secreted by cells cultured in a bioreactor. Our experimental approach represents a novel and robust analytical strategy to be applied to the control and optimization of the production of bioactive secreted proteins.  相似文献   

14.
A method of immobilizing clenbuterol (CLEN) on the sensor chip for spectral surface plasmon resonance imaging (SPRi) was experimentally investigated. The bioprobes on the sensor chip were prepared by immobilizing bovine serum albumin (BSA) protein and conjugating CLEN molecules to BSA, which provides more active points and free orientations for specific binding. The calibration curve showed that the wavelength resonance shift decreased as the concentration of CLEN analyte increased, consistent with the inhibition principle. The limit of detection (LOD) was estimated to be 6.32 μg/ml. This method proved to be highly specific, high throughput, label free, and operationally convenient.  相似文献   

15.
We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor–UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5 ng/ml. The detection limit is 0.06 ng/ml for the biosensor with antibody and 0.08 ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20 ng/ml for plasma samples and 0.30 to 0.49 ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids.  相似文献   

16.
In this paper, we describe the detection of bacterial cell-extracted 16S ribosomal RNA (rRNA) using an emerging technology, surface plasmon resonance (SPR) imaging of DNA arrays. Surface plasmon resonance enables detection of molecular interactions on surfaces in response to changes in the index of refraction, therefore eliminating the need for a fluorescent or radioactive label. A variation of the more common SPR techniques, SPR imaging enables detection from multiple probes in a reusable array format. The arrays developed here contain DNA probes (15-21 bases) designed to be complementary to 16S rRNA gene sequences of Escherichia coli and Bacillus subtilis as well as to a highly conserved sequence found in rRNAs from most members of the domain Bacteria. We report species-specific hybridization of cell-extracted total RNA and in vitro transcribed 16S rRNA to oligonucleotide probes on SPR arrays. We tested multiple probe sequences for each species, and found that success or failure of hybridization was dependent upon probe position in the 16S rRNA molecule. It was also determined that one of the probes intended to bind 16S rRNA also bound an unknown protein. The amount of binding to these probes was quantified with SPR imaging. A detection limit of 2 micro g ml-1 was determined for fragmented E. coli total cellular RNA under the experimental conditions used. These results indicate the feasibility of using SPR imaging for 16S rRNA identification and encourage further development of this method for direct detection of other RNA molecules.  相似文献   

17.
Matrix mineralization is a terminal process in osteoblast differentiation, and several approaches have been introduced to characterize the process in tissues or cultured cells. However, an analytical technique that quantitates in vitro matrix mineralization of live cells without any labeling or complex treatments is still lacking. In this study, we investigate a simple and enhanced optical method based on surface plasmon resonance (SPR) detection that can monitor the surface-limited refractive index change in real-time. During monitoring MC3T3-E1 cells in vitro culture every 2 days for over 4 weeks, the SPR angle is shifted with a greater resonance change in cells cultured with osteogenic reagents than those without the reagents. In addition, the SPR results obtained have a close relevance with the tendency of conventional mineralization staining and an inductively coupled plasma-based calcium content measure. These results suggest a new approach of a real-time SPR monitoring in vitro matrix mineralization of cultured cells.  相似文献   

18.
In this study, an immunosensor chip utilizing surface plasmon resonance (SPR) and cyclic voltammetry (CV) was fabricated for detecting carcinoembryonic antigen (CEA). Specifically, we applied in parallel an SPR instrument and a CV device to monitor the assembly of carcinoembryonic antibody (anti-CEA) on a protein A-conjugated surface and the subsequent ligand reaction. The immunosensor chips were constructed by various concentrations of protein A. To determine the surface characteristics of different self-assembly monolayers (SAMs), several quantitative and kinetic measurements were carried out. The extent of immobilization of anti-CEA and the immune response of anti-CEA antibody against CEA were measured using the SPR instrument and CV device. The terminal functional groups of protein A have different effects on the adsorption and covalent binding of immunoprotein depending on the steric hindrance. Through the parallel measurements, we demonstrate that SPR and CV are sensitive to measure the antigen–antibody binding capacity.  相似文献   

19.
Zhang D  Yan Y  Li Q  Yu T  Cheng W  Wang L  Ju H  Ding S 《Journal of biotechnology》2012,160(3-4):123-128
A method based on surface plasmon resonance (SPR) DNA biosensor has been developed for label-free and high-sensitive detection of Salmonella. A biotinylated single-stranded oligonucleotide probe was designed to target a specific sequence in the invA gene of Salmonella and then immobilized onto a streptavidin coated dextran sensor surface. The invA gene was isolated from bacterial cultures and amplified using a modified semi-nested asymmetric polymerase chain reaction (PCR) technique. In order to investigate the hybridization detection, experiments with different concentration of synthetic target DNA sequences have been performed. The calibration curve of synthetic target DNA had good linearity from 5 nM to 1000 nM with a detection limit of 0.5 nM. The proposed method was applied successfully to the detection of single-stranded invA amplicons from three serovars of Salmonella, i.e., Typhimurium, Enterica and Derby, and the responses to PCR products were related to different S. typhimurium concentrations in the range from 10(2) to 10(10) CFU mL(-1). While with this system to detect E. coli and S. aureus, no significant signal was observed, demonstrating good selectivity of the method. In addition, the hybridization can be completed within 15 min, and the excellent sensor surface regeneration allows at least 300 assay cycles without obvious loss of performance.  相似文献   

20.
An immunosensor based on surface plasmon resonance (SPR) with enhanced performance was developed through a mixed self-assembled monolayer. A mixture of 16- mercaptohexadecanic acid (16-MHA) and 1-undecanethiol with various molar ratios was self-assembled on gold (Au) surface and the carboxylic acid groups of 16-MHA were then coordinated to Zn ions by exposing the substrate to an ethanolic solution of Zn(NO(3))(2)d6H2O. The antibody was immobilized on the SPR surface by exposing the functionalized substrate to the desired solution of antibody in phosphatebuffered saline (PBS) molecules. The film formation in series was confirmed by SPR and atomic force microscopy (AFM). The functionalized surface was applied to develop an SPR immunosensor for detecting human serum albumin (HSA) and the estimated detection limit (DL) was 4.27 nM. The limit value concentration can be well measured between ill and healthy conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号