首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Phytochrome A (phyA) and phytochrome B (phyB) share the control of many processes but little is known about mutual signaling regulation. Here, we report on the interactions between phyA and phyB in the control of the activity of an Lhcb1*2 gene fused to a reporter, hypocotyl growth and cotyledon unfolding in etiolated Arabidopsis thaliana. The very-low fluence responses (VLFR) induced by pulsed far-red light and the high-irradiance responses (HIR) observed under continuous far-red light were absent in the phyA and phyA phyB mutants, normal in the phyB mutant, and reduced in the fhy1 mutant that is defective in phyA signaling. VLFR were also impaired in Columbia compared to Landsberg erecta. The low-fluence responses (LFR) induced by red-light pulses and reversed by subsequent far-red light pulses were small in the wild type, absent in phyB and phyA phyB mutants but strong in the phyA and fhy1 mutants. This indicates a negative effect of phyA and FHY1 on phyB-mediated responses. However, a pre-treatment with continuous far-red light enhanced the LFR induced by a subsequent red-light pulse. This enhancement was absent in phyA, phyB, or phyA phyB and partial in fhy1. The levels of phyB were not affected by the phyA or fhy1 mutations or by far-red light pre-treatments. We conclude that phyA acting in the VLFR mode (i.e. under light pulses) is antagonistic to phyB signaling whereas phyA acting in the HIR mode (i.e. under continuous far-red light) operates synergistically with phyB signaling, and that both types of interaction require FHY1.  相似文献   

2.
Wang H  Deng XW 《The EMBO journal》2002,21(6):1339-1349
In Arabidopsis, phytochrome A (phyA) is the primary photoreceptor mediating various plant responses to far-red (FR) light. Here we show that phyA signaling involves a combinatorial action of downstream intermediates, which controls overlapping yet distinctive sets of FR responses. FHY3 is a prominent phyA signaling intermediate sharing structural similarity to FAR1, a previously identified phyA signaling component. The fhy3 and far1 mutants display similar yet distinctive defects in phyA signaling; however, overexpression of either FHY3 or FAR1 suppresses the mutant phenotype of both genes. Moreover, overexpression of partial fragments of FHY3 can cause a dominant-negative interference phenotype on phyA signaling that is stronger than those of the fhy3 or far1 null mutants. Further, we demonstrate that FHY3 and FAR1 are capable of homo- and hetero-interaction. Our data indicate that FHY3, together with FAR1, defines a key module in a signaling network underlying phyA-mediated FR light responses.  相似文献   

3.
The cryptochrome 1 (cry1) photoreceptor is responsible for the majority of the inhibitory effect of blue light on hypocotyl elongation, but phytochrome photoreceptors also contribute to the response through a phenomenon known as coaction. In Arabidopsis thaliana the participation of phytochromes A and B (phyA and phyB) in the early phase of cry1 action was investigated by determining the effects of phyA, phyB and hy1 mutations on a cry1-dependent membrane depolarization, which is caused by the activation of plasma-membrane anion channels within seconds of blue light treatment. High-resolution growth measurements were also performed to determine the timing of the requirement for phytochrome in cry1-mediated growth inhibition, which is causally linked to the preceding anion-channel activation. A null mutation in PHYA impaired the membrane depolarization and prevented the early cry1-dependent phase of growth inhibition as effectively and with the same time course as mutations in CRY1. Thus, phyA is necessary for cry1/cry2 to activate anion channels within the first few seconds of blue light and to suppress hypocotyl elongation for at least 120 min. This finding furthers the notion of an intimate mechanistic association between the cry and phy receptors in mediating light responses. The absence of phyB did not affect the depolarization or growth inhibition during this time frame. Instead, double mutant analyses showed that the phyB mutation suppressed the early growth phenotypes of both phyA and cry1 seedlings. This result is consistent with the emerging view that the prevailing growth rate of a stem is a compromise between light-dependent inhibitory and promotive influences. It appears that phyB opposes the cry1/phyA-mediated inhibition by promoting growth during at least the first 120 min of blue light treatment.  相似文献   

4.
Devlin PF  Kay SA 《The Plant cell》2000,12(12):2499-2509
The circadian clock is entrained to the daily cycle of day and night by light signals at dawn and dusk. Plants make use of both the phytochrome (phy) and cryptochrome (cry) families of photoreceptors in gathering information about the light environment for setting the clock. We demonstrate that the phytochromes phyA, phyB, phyD, and phyE act as photoreceptors in red light input to the clock and that phyA and the cryptochromes cry1 and cry2 act as photoreceptors in blue light input. phyA and phyB act additively in red light input to the clock, whereas cry1 and cry2 act redundantly in blue light input. In addition to the action of cry1 as a photoreceptor that mediates blue light input into the clock, we demonstrate a requirement of cry1 for phyA signaling to the clock in both red and blue light. Importantly, Arabidopsis cry1 cry2 double mutants still show robust rhythmicity, indicating that cryptochromes do not form a part of the central circadian oscillator in plants as they do in mammals.  相似文献   

5.
The phytochrome family of red/far-red photoreceptors is involved in the regulation of a wide range of developmental responses in plants. The Arabidopsis genome contains five phytochromes (phyA-E), among which phyA and phyB play the most important roles. Phytochromes localize to the cytosol in the dark and accumulate in the nucleus under light conditions, inducing specific phytochrome-mediated responses. Light-regulated nuclear accumulation of the phytochrome photoreceptors is therefore considered a key regulatory step of these pathways. In fact, one of the most severe phyA signaling mutants, fhy1 (far red elongated hypocotyl 1), is strongly affected in nuclear accumulation of phyA. The fhy1 fhl (fhy1 like) double mutant, lacking both FHY1 and its only close homolog FHL, is virtually blind to far-red light like phyA null seedlings. Here we show that FHL accounts for residual amounts of phyA in the nucleus in a fhy1 background and that nuclear accumulation of phyA is completely inhibited in an fhy1 FHL RNAi knock-down line. Moreover, we demonstrate that FHL and phyA interact with each other in a light-dependent manner and that they co-localize in light-induced nuclear speckles. We also identify a phyA-binding site at the C-terminus of FHY1 and FHL, and show that the N-terminal 406 amino acids of phyA are sufficient for the interaction with FHY1/FHL.  相似文献   

6.
7.
The Arabidopsis gene encoding the key flavonoid biosynthesis enzyme chalcone synthase (CHS) is regulated by several environmental and endogenous stimuli. Here we dissect the network of light signalling pathways that control CHS expression in mature leaves using cryptochrome (cry) and phytochrome (phy) deficient mutants. The UV-A/blue light induction of CHS is mediated principally by cry1, but neither cry1 nor cry2 is involved in UV-B induction or in the UV-A and blue light signalling pathways that interact synergistically with the UV-B pathway to enhance CHS expression. Moreover, these synergistic responses do not require phyA or phyB. Phytochrome is a positive regulator of the cry1 inductive pathway, mediating distinct potentiation and coaction effects. A red light pretreatment enhances subsequent cry1-mediated CHS induction. This potentiation is unaltered in phyA and phyB mutants but much reduced in a phyA phyB double mutant, indicating that it requires principally phyA or phyB. In contrast, the cry1-mediated induction of CHS, without pretreatment, is much reduced in phyB but not phyA mutants, indicating coaction between cry1 and phyB. Further experiments with phy-deficient mutants demonstrate that phyB is a negative regulator of the UV-B inductive pathway. We further show that phyB acts upstream of the points of interaction of the UV-A and blue synergism pathways with the UV-B pathway. We propose that phyB functions to balance flux through the cry1 and UV-B signalling pathways.  相似文献   

8.
9.
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date no factor specifically required for this event has been identified . Among all phyA signaling mutants, fhy1 and fhy3 (far-red elongated hypocotyl 1 and 3) have the most severe hyposensitive phenotype, indicating that they play particularly important roles . FHY1 is a small plant-specific protein of unknown function localized both in the nucleus and the cytoplasm . Here we show that FHY1 is specifically required for the light-regulated nuclear accumulation of phyA but not phyB. Moreover, phyA accumulation is only slightly affected in fhy3, indicating that the diminished nuclear accumulation of phyA observed in fhy1 seedlings is not simply a general consequence of reduced phyA signaling. By in vitro pull-down and yeast two-hybrid analyses, we demonstrate that FHY1 physically interacts with phyA, preferentially in its active Pfr form. Furthermore, FHY1 and phyA colocalize in planta. We therefore identify the first component required for light-regulated phytochrome nuclear accumulation.  相似文献   

10.
Cryptochromes are widespread in higher plants but their physiological roles as blue-light photoreceptors have been examined in relatively few species. Screening in a phyA null mutant background has identified several blue-light response mutants in pea (Pisum sativum), including one that carries a substitution of a highly conserved glycine residue in the N-terminal photolyase-homologous domain of the pea CRY1 gene. Analyses of cry1, phyA, and phyB mutants show that all three photoreceptors contribute to seedling photomorphogenesis under high-irradiance blue light, whereas phyA is the main photoreceptor active under low irradiances. Triple phyA phyB cry1 mutants grown under high-irradiance blue light are indistinguishable from dark-grown wild-type plants in length and leaf expansion but show a small residual response to higher-irradiance white light. Monogenic cry1 mutants have little discernable phenotype at the seedling stage, but later in development are more elongated than wild-type plants. In addition, the loss of cry1 moderates the short-internode phenotype of older phyA mutants, suggesting an antagonism between phyA and cry1 under some conditions. Pea cry1 has a small inhibitory effect on flowering under long and short days. However, the phyA cry1 double mutant retains a clear promotion of flowering in response to blue-light photoperiod extensions, indicating a role for one or more additional blue-light photoreceptors in the control of flowering in pea.  相似文献   

11.
12.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   

13.
Several novel allelic groups of tomato (Solanum lycopersicum L.) mutants with impaired photomorphogenesis have been identified after gamma-ray mutagenesis of phyA phyB1 double-mutant seed. Recessive mutants in one allelic group are characterized by retarded hook opening, increased hypocotyl elongation and reduced hypocotyl chlorophyll content under white light (WL). These mutants showed a specific impairment in response to blue light (BL) resulting from lesions in the gene encoding the BL receptor cryptochrome 1 (cry1). Phytochrome A and cry1 are identified as the major photoreceptors mediating BL-induced de-etiolation in tomato, and act under low and high irradiances, respectively. Phytochromes B1 and B2 also contribute to BL sensing, and the relative contribution of each of these four photoreceptors differs according to the light conditions and the specific process examined. Development of the phyA phyB1 phyB2 cry1 quadruple mutant under WL is severely impaired, and seedlings die before flowering. The quadruple mutant is essentially blind to BL, but experiments employing simultaneous irradiation with BL and red light suggest that an additional non-phytochrome photoreceptor may be active under short daily BL exposures. In addition to effects on de-etiolation, cry1 is active in older, WL-grown plants, and influences stem elongation, apical dominance, and the chlorophyll content of leaves and fruit. These results provide the first mutant-based characterization of cry1 in a plant species other than Arabidopsis.  相似文献   

14.
Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light-induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime.  相似文献   

15.
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.  相似文献   

16.
The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.Abbreviations HIR: High irradiance response - LFR: Low fluence response - Pfr: Far-red absorbing form of phytochrome - phyA: Phytochrome A - phyB1: Phytochrome B1 - phyB2: Phytochrome B2 - phyA(B1, B2): Phytochrome mutant deficient in phyA (B1, B2) - phyAphyB1(B1B2,AB2): Double phytochrome mutant deficient in phyA and phyB1(B1, B2) - phyAphyB1phyB2: Triple mutant deficient in phyA, phyB1 and phyB2 - VLFR: Very low fluence response - WT: Wild-type tomato Communicated by R. Reski  相似文献   

17.
Phytochrome A (phyA) is the primary photoreceptor responsible for various far-red (FR) light-mediated responses. Previous studies have identified multiple phyA signaling mutants, including both positive and negative regulators of the phyA-mediated responses. How these defined intermediates act to mediate FR light responses is largely unknown. Here a cDNA microarray was used to examine effects of those mutations on the far-red light control of genome expression. Clustering analysis of the genome expression profiles supports the notion that phyA signaling may entail a network with multiple paths, controlling overlapping yet distinct sets of gene expression. FHY1, FAR1 and FHY3 most likely act upstream in the phyA signaling network, close to the phyA photoreceptor itself. FIN219, SPA1 and REP1 most likely act somewhere more downstream in the network and control the expression of smaller sets of genes. Further, this study also provides genomics evidence for the partial functional redundancy between FAR1 and FHY3. These two homologous proteins control the expression of a largely overlapping set of genes, and likely act closely together in the phyA-mediated FR light responses.  相似文献   

18.
During de-etiolation, the co-ordinated synthesis of chlorophyll and the chlorophyll a/b-binding proteins is critical to the development of functional light-harvesting complexes. To understand how this co-ordination is achieved, we have made a detailed study of the light-regulated signalling pathways mediating the expression of the HEMA1 and Lhcb genes encoding glutamyl-tRNA reductase, the first committed enzyme of 5-aminolaevulinic acid formation, and chlorophyll a/b-binding proteins, respectively. To do this, we have screened 7 photoreceptor and 12 light-signalling mutants of Arabidopsis thaliana L. for induction of HEMA1 and Lhcb expression in continuous red, far-red and blue light and following a red pulse. We have categorised these mutants into two groups. The phyA, phyB, phyAphyB, cry1, cry2, cop1, det1, poc1, eid1, and far1 mutations lead to diverse effects on the light regulation of HEMA1, but affect Lhcb expression to a similar degree. The hy1, hy2, hy5, fin219, fhy1, fhy3, spa1, ndpk2, and pat1 mutants also affect light regulation of both HEMA1 and Lhcb expression, but with differences in the relative magnitude of the two responses. The fhy1 and fhy3 mutants show the most significant differences in light regulation between the two genes, with both showing a strong inhibition of HEMA1 expression under continuous red light. These results demonstrate that co-ordinated regulation of HEMA1 and Lhcb is largely achieved through parallel light regulation mediated by shared phytochrome- and cryptochrome-signalling pathways. However, glutamyl-tRNA reductase is also required for the synthesis of other tetrapyrroles and this dual role may account for the observed differences in these light-signalling pathways.  相似文献   

19.
20.
Wild-type or phyA, phyB, or hy4 mutant Arabidopsis seedlings lacking phytochrome A (phyA), phytochrome B (phyB), or cryptochrome 1 (cry1), respectively, and the double and triple mutants were used in combination with blue-light treatments given simultaneously with red or far-red light. We investigated the interaction between phytochromes and cry1 in the control of hypocotyl growth and cotyledon unfolding. Under conditions deficient for cry1 (short exposures to blue light) or phyB (far-red background), these photoreceptors acted synergistically: Under short exposures to blue light (3 h/d) added to a red-light background, cry1 activity required phyB (e.g. the hy4 mutant was taller than the wild type but the phyBhy4 mutant was not taller than the phyB mutant). Under prolonged exposures to blue light (24 h/d) added to a far-red light background, phyB activity required cry1 (e.g. the phyAphyB mutant was taller than the phyA mutant but the phyAphyBhy4 mutant was not taller than the phyAhy4 mutant). Under more favorable light inputs, i.e. prolonged exposures to blue light added to a red-light background, the effects of cry1 and phyB were independent. Thus, the synergism between phyB and cry1 is conditional. The effect of cry1 was not reduced by the phyA mutation under any tested light condition. Under continuous blue light the triple mutant phyAphyBhy4 showed reduced hypocotyl growth inhibition and cotyledon unfolding compared with the phyAphyB mutant. The action of cry1 in the phyAphyB double mutant was higher under the red-light than the far-red-light background, indicating a synergistic interaction between cry1 and phytochromes C, D, or E; however, a residual action of cry1 independent of any phytochrome is likely to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号