首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The first step in the activation of the classical complement pathway, by immune complexes, involves the binding of the globular heads of C1q to the Fc regions of aggregated IgG or IgM. Located C-terminal to the collagen region, each globular head is composed of the C-terminal halves of one A (ghA), one B (ghB), and one C chain (ghC). To dissect their structural and functional autonomy, we have expressed ghA, ghB, and ghC in Escherichia coli as soluble proteins linked to maltose-binding protein (MBP). The affinity-purified fusion proteins (MBP-ghA, -ghB, and -ghC) bound differentially to heat-aggregated IgG and IgM, and also to three known C1q-binding peptides, derived from HIV-1, HTLV-I, and beta-amyloid. In the ELISAs, the MBP-ghA bound to heat-aggregated IgG and IgM as well as to the HIV-1 gp41 peptide; the MBP-ghB bound preferentially to IgG rather than IgM, in addition to binding beta-amyloid peptide, whereas the MBP-ghC showed a preference for IgM and the HTLV-I gp21 peptide. Both MBP-ghA and MBP-ghB also inhibited C1q-dependent hemolysis of IgG- and IgM-sensitized sheep erythrocytes. However, for IgM-coated erythrocytes, MBP-ghC was a better inhibitor of C1q than MBP-ghB. The recombinant forms of ghA, ghB, and ghC also bound specifically to apoptotic PBMCs. We conclude that the C1q globular head region is likely to have a modular organization, being composed of three structurally and functionally independent modules, which retains multivalency in the form of a heterotrimer. The heterotrimeric organization thus offers functional flexibility and versatility to the whole C1q molecule.  相似文献   

2.
The first step in the activation of the classical complement pathway by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of IgG or IgM. The globular heads of C1q (gC1q domain) are located C-terminal to the six triple-helical stalks present in the molecule, each head being composed of the C-terminal halves of one A, one B, and one C chain. The gC1q modules are also found in a variety of noncomplement proteins, such as type VIII and X collagens, precerebellin, hibernation protein, multimerin, Acrp-30, and saccular collagen. In several of these proteins, the chains containing these gC1q modules appear to form a homotrimeric structure. Here, we report expression of an in-frame fusion of a trimerizing neck region of surfactant protein D with the globular head region of C1q B chain as a fusion to Escherichia coli maltose binding protein. Following cleavage by factor Xa and removal of the maltose binding protein, the neck and globular region, designated ghB(3), formed a soluble, homotrimeric structure and could inhibit C1q-dependent hemolysis of IgG- and IgM-sensitized sheep erythrocytes. The functional properties of ghB(3) indicate that the globular regions of C1q may adopt a modular organization in which each globular head of C1q may be composed of three structurally and functionally independent domains, thus retaining multivalency in the form of a heterotrimer. The finding that ghB(3) is an inhibitor of C1q-mediated complement activation opens up the possibility of blocking activation at the first step of the classical complement pathway.  相似文献   

3.
Components that propagate inflammation in joint disease may be derived from cartilage since the inflammation resolves after joint replacement. We found that the cartilage component fibromodulin has the ability to activate an inflammatory cascade, i.e. complement. Fibromodulin and immunoglobulins cause comparable deposition of C1q, C4b, and C3b from human serum. Using C1q and factor B-deficient sera in combination with varying contents of metal ions, we established that fibromodulin activates both the classical and the alternative pathways of complement. Further studies revealed that fibromodulin binds directly to the globular heads of C1q, leading to activation of C1. However, deposition of the membrane attack complex and C5a release were lower in the presence of fibromodulin as compared with IgG. This can be explained by the fact that fibromodulin also binds complement inhibitor factor H. Factor H and C1q bind to non-overlapping sites on fibromodulin, but none of the interactions is mediated by the negatively charged keratan sulfate substituents of fibromodulin. C1q but not factor H binds to an N-terminal fragment of fibromodulin previously implicated to be affected in cartilage stimulated with the inflammatory cytokine interleukin 1. Taken together our observations indicate fibromodulin as one factor involved in the sustained inflammation of the joint.  相似文献   

4.
C1q binding and C1 activation by various isolated cellular membranes   总被引:3,自引:0,他引:3  
Cellular and subcellular membranes obtained from heart, liver, and brain tissue from human, baboon, bovine, rabbit, and rat bound highly purified, radioiodinated human C1q with a high affinity (Ka = 10(8) to 10(10) M-1). The majority of these membrane preparations were able to activate fully assembled C1 as evidenced by the conversion of 125I-C1s, incorporated into C1 complexes, to 125I-C1s. C1 activation by baboon heart mitochondrial membranes required an intact C1 complex and appeared to be mediated by the binding of the C1q subcomponent in that excess C1q completely blocked C1 activation. Several experiments suggested that the heart mitochondrial membrane binding site for C1q is an integral component of the mitochondrial membrane and that C1q interacted with the membrane binding site through its globular head regions. It is suggested that the binding of C1q and the activation of C1 by cellular and subcellular membranes may be involved in the initiation and/or enhancement of the inflammatory process after acute tissue damage.  相似文献   

5.
Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). Yet, it remains unclear what the dominant blood cell type(s) and inflammation-related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human PBMCs or CD14(+) isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q-containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14(+) monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low-abundance CD14(dim) ("patrolling") subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells, CD14(dim) monocytes, and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.  相似文献   

6.
The capacity of anti-dextran MOPC-104E IgM to bind and activate the first complement component (C1) in the presence of various specific monovalent oligosaccharides was investigated. Enzyme-linked immunosorbent assay revealed that IgM-oligosaccharide complexes saturated up to 97% with ligands were not capable of binding C1q under physiological conditions. Nor was any activation of reconstituted C1 observed. These results indicate that occupation of the single IgM binding sites by a monovalent ligand is not sufficient to induce a signal for complement activation.  相似文献   

7.
As a charge pattern recognition molecule, human C1q can bind a range of immunoglobulin and non-immunoglobulin ligands via its carboxy-terminal globular domain and activate the classical complement pathway. Each globular domain has a heterotrimeric organization, composed of the carboxy-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Recently, we have found that the recombinant forms of individual ghA, ghB and ghC bind differentially to IgG, IgM, gp41 peptide 601-613 of human immunodeficiency virus-1 (HIV-1), gp21 peptide 400-429 of human T cell lymphotrophic virus-I (HTLV-I), beta-amyloid peptide, and apoptotic cells, suggesting a modular organization of the globular domain. This paper examines the interaction of ghA, ghB and ghC with two known C1q ligands: Klebsiella pneumoniae porin OmpK36 and salivary agglutinin. In addition, we have used a panel of recombinant single-chain antibodies (scFv) specific for ghA, ghB and ghC in order to map sites on the heterotrimeric globular domain which are likely to interact with IgG1, IgG3, IgM, OmpK36, salivary agglutinin and gp41 loop peptide. The combined use of recombinant ghA, ghB, ghC and single-chain antibodies has revealed at least three ligand-binding sites on the globular domain of C1q: one is IgG- and OmpK36-specific, the second (IgM-binding site) is most likely overlapping with IgG/OmpK36 binding site, and the third (the gp41-binding site) seems to be located at the junction between the collagen and globular domains.  相似文献   

8.
This study analyzes the expression of monocyte chemoattractant protein-1 (MCP-1) by inflamed synovial tissue and defines its regulation in cultured synoviocytes. Synoviocytes from patients with rheumatoid arthritis and osteoarthritis express the 0.7-kb MCP-1 mRNA. Stimulation of synoviocytes with IL-1, TNF-alpha, LPS, platelet-derived growth factor, and transforming growth factor-beta-1, but not with basic fibroblast growth factor causes a marked increase in MCP-1 mRNA levels. Expression of the MCP-1 gene is inducible by activators of the protein kinase A (cAMP) and C (PMA) signal transduction pathways and is differentially regulated by the steroids dexamethasone and retinoic acid. Cultured synoviocytes de novo synthesize 12-, 15-, and 15.2-kDa MCP-1 proteins, which increase after stimulation with IL-1. Synovial tissues from donors without joint disease and from patients with rheumatoid or osteoarthritis were analyzed for MCP-1 mRNA expression by in situ hybridization. In these samples MCP-1 mRNA expressing cells were predominantly found in the sublining cell layers, whereas specimens of normal synovial tissue contained only few positive cells. These results identify synoviocytes as a source of MCP-1. Its expression is controlled by peptide regulatory factors that are known to be present in arthritic joints. Detection of cells producing MCP-1 mRNA in synovial tissues from patients with arthritis shows that this gene is expressed in vivo and suggests that MCP-1 can play a role in recruiting monocytes in joint inflammation.  相似文献   

9.
Interleukin-26 (IL-26), a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by epithelial cells. IL-26 has been also reported overexpressed in Crohn''s disease, suggesting that it may be involved in the physiopathology of chronic inflammatory disorders. Here, we have analyzed the expression and role of IL-26 in rheumatoid arthritis (RA), a chronic inflammatory disorder characterized by joint synovial inflammation. We report that the concentrations of IL-26 are higher in the serums of RA patients than of healthy subjects and dramatically elevated in RA synovial fluids compared to RA serums. Immunohistochemistry reveals that synoviolin+ fibroblast-like synoviocytes and CD68+ macrophage-like synoviocytes are the main IL-26-producing cells in RA joints. Fibroblast-like synoviocytes from RA patients constitutively produce IL-26 and this production is upregulated by IL-1-beta and IL-17A. We have therefore investigated the role of IL-26 in the inflammatory process. Results show that IL-26 induces the production of the proinflammatory cytokines IL-1-beta, IL-6, and tumor necrosis factor (TNF)-alpha by human monocytes and also upregulates the expression of numerous chemokines (mainly CCL20). Interestingly, IL-26-stimulated monocytes selectively promote the generation of RORgamma t+ Th17 cells, through IL-1-beta secretion by monocytes. More precisely, IL-26-stimulated monocytes switch non-Th17 committed (IL-23R or CCR6 CD161) CD4+ memory T cells into Th17 cells. Finally, synovial fluids from RA patients also induce Th17 cell generation and this effect is reduced after IL-26 depletion. These findings show that IL-26 is constitutively produced by RA synoviocytes, induces proinflammatory cytokine secretion by myeloid cells, and favors Th17 cell generation. IL-26 thereby appears as a novel proinflammatory cytokine, located upstream of the proinflammatory cascade, that may constitute a promising target to treat RA and chronic inflammatory disorders.  相似文献   

10.
Receptor-mediated binding of C1q on pulmonary endothelial cells   总被引:2,自引:0,他引:2  
Normal undamaged pulmonary endothelial cells appear to be immunologically privileged in that they do not express receptors for the Fc portion of IgG nor for C3b. However, these receptors become unmasked on endothelial cells injured by viral infection or exposure to white cell lysates. We now present evidence to indicate that C1q binds to specific receptors on the surface of normal healthy endothelial cells. The binding is dose-dependent, reversible and saturable. Furthermore our data show that binding of C1q to endothelial cells is via the collagenous portion of the molecule not via the globular head regions. Thus binding of C1q to endothelium would have the effect of exposing Fc receptors that could then bind to IgG of circulating immune complexes. That Fc receptors are in fact exposed is shown by rosette formation with antibody sensitized erythrocytes. With 2C1r-2C1s-associated C1q, no binding occurred using C1 fixation and transfer assays. Our results indicate that C1q binding to endothelium provides a means for localizing immune complexes on pulmonary vessels and may be important in the initiation and progression of the inflammatory response.  相似文献   

11.
TNF-like cytokine (TL1A) is a newly identified member of the TNF superfamily of ligands that is important for T cell costimulation and Th1 polarization. However, despite increasing information about its functions, very little is known about expression of TL1A in normal or pathological states. In this study, we report that mononuclear phagocytes appear to be a major source of TL1A in rheumatoid arthritis (RA), as revealed by their strong TL1A expression in either synovial fluids or synovial tissue of rheumatoid factor (RF)-seropositive RA patients, but not RF-/RA patients. Accordingly, in vitro experiments revealed that human monocytes express and release significant amounts of soluble TL1A when stimulated with insoluble immune complexes (IC), polyethylene glycol precipitates from the serum of RF+/RA patients, or with insoluble ICs purified from RA synovial fluids. Monocyte-derived soluble TL1A was biologically active as determined by its capacity to induce apoptosis of the human erythroleukemic cell line TF-1, as well as to cooperate with IL-12 and IL-18 in inducing the production of IFN-gamma by CD4(+) T cells. Because RA is a chronic inflammatory disease with autoimmune etiology, in which ICs, autoantibodies (including RF), and various cytokines contribute to its pathology, our data suggest that TL1A could be involved in its pathogenesis and contribute to the severity of RA disease that is typical of RF+/RA patients.  相似文献   

12.
The affinity of human C1q subcomponent for IgM of normal human serum and Waldenstr?m macroglobulins of patients Sew and Zuk were investigated by the polyethylene glycol 6,000 immune complexes precipitation test. This test was calibrated with heat-aggregated gamma-globulin (HAGG); maximum fixation of C1q ranged from 60 to 80% (measured as percentage of radioactivity of the immune complexes precipitate) and was observed when the C1q:HAGG concentration ratio was about 1:250. At the ratio of 1:20 the radioactivity of the precipitate was about 43% of the total. The capacity of polyclonal IgM and Waldenstr?m macroglobulins for C1q fixation is low and variable. The percentage of C1q fixed at the C1q:IgM ratio of 1:20 for polyclonal IgM and Zuk macroglobulin was about 9%, whereas for Sew it was only about 1%.  相似文献   

13.
Much of the pathology of systemic lupus erythematosus (SLE) is caused by deposition of immune complexes (ICs) into various tissues, including renal glomeruli. Because clearance of ICs depends largely on early complement component C1q, homozygous C1q deficiency is a strong genetic risk factor in SLE, although it is rare in SLE patients overall. In this work we addressed the issue of whether genetic polymorphisms affecting C1q levels may predispose to SLE, using the (NZB x NZW)F(1) model. C1q genes are composed of three genes, C1qa, C1qc, and C1qb, arranged in this order, and each gene consists of two exons separated by one intron. Sequence analysis of the C1q gene in New Zealand Black (NZB), New Zealand White (NZW), and BALB/c mice showed no polymorphisms in exons and introns of three genes. However, Southern blot analysis revealed unique insertion polymorphism of a total of approximately 3.5 kb in the C1qa upstream region of NZB mice. C1q levels in sera and culture supernatants of LPS-stimulated peritoneal macrophages and C1q messages in spleen cells were all lower in disease-free young NZB and (NZB x NZW)F(1) mice than in age-matched non-autoimmune NZW and BALB/c mice. Quantitative trait loci analysis using (NZB x NZW)F(1) x NZW backcrosses showed that NZB microsatellites in the vicinity of the C1q allele on chromosome 4 were significantly linked to low serum C1q levels and the development of nephritis. These data imply that not only C1q deficiency but also regulatory region polymorphisms down-regulating C1q levels may confer the risk for lupus nephritis by reducing IC clearance and thus promoting IC deposition in glomeruli.  相似文献   

14.
Decorin and biglycan are closely related abundant extracellular matrix proteoglycans that have been shown to bind to C1q. Given the overall structural similarities between C1q and mannose-binding lectin (MBL), the two key recognition molecules of the classical and the lectin complement pathways, respectively, we have examined functional consequences of the interaction of C1q and MBL with decorin and biglycan. Recombinant forms of human decorin and biglycan bound C1q via both collagen and globular domains and inhibited the classical pathway. Decorin also bound C1 without activating complement. Furthermore, decorin and biglycan bound efficiently to MBL, but only biglycan could inhibit activation of the lectin pathway. Other members of the collectin family, including human surfactant protein D, bovine collectin-43, and conglutinin also showed binding to decorin and biglycan. Decorin and biglycan strongly inhibited C1q binding to human endothelial cells and U937 cells, and biglycan suppressed C1q-induced MCP-1 and IL-8 production by human endothelial cells. In conclusion, decorin and biglycan act as inhibitors of activation of the complement cascade, cellular interactions, and proinflammatory cytokine production mediated by C1q. These two proteoglycans are likely to down-regulate proinflammatory effects mediated by C1q, and possibly also the collectins, at the tissue level.  相似文献   

15.
Osteoarthritis (OA) is associated with a local inflammatory process. Dyslipidemia is known to be an underlying cause for the development of OA. Therefore, lipid and inflammatory levels were quantified ex vivo in blood and synovial fluid of OA patients (n=29) and compared to those of rheumatoid arthritis (RA) patients (n=27) or healthy volunteers (HV) (n=35). The role of apolipoprotein A-I (ApoA1) was investigated in vitro on inflammatory parameters using human joint cells isolated from cartilage and synovial membrane obtained from OA patients after joint replacement. Cells were stimulated with ApoA1 in the presence or not of serum amyloid A (SAA) protein and/or lipoproteins (LDL and HDL) at physiological concentration observed in OA synovial fluid. In our ex vivo study, ApoA1, LDL-C and total cholesterol levels were strongly correlated to each other inside the OA joint cavity whereas same levels were not or weakly correlated to their corresponding serum levels. In OA synovial fluid, ApoA1 was not as strongly correlated to HDL as observed in OA serum or in RA synovial fluid, suggesting a dissociative level between ApoA1 and HDL in OA synovial fluid. In vitro, ApoA1 induced IL-6, MMP-1 and MMP-3 expression by primary chondrocytes and fibroblast-like synoviocytes through TLR4 receptor. HDL and LDL attenuated joint inflammatory response induced by ApoA1 and SAA in a ratio dependent manner. In conclusion, a dysregulated lipidic profile in the synovial fluid of OA patients was observed and was correlated with inflammatory parameters in the OA joint cavity. Pro-inflammatory properties of ApoA1 were confirmed in vitro.  相似文献   

16.
IL-1 molecules are encoded by two distinct genes, IL-1alpha and IL-1beta. Both isoforms possess essentially identical activities and potencies, whereas IL-1alpha, in contrast to IL-1beta, is known to act as a membrane-associated IL-1 (MA-IL-1) and plays an important role in a variety of inflammatory situations. The transgenic (Tg) mouse line (Tg1706), which was generated in our laboratory, overexpresses human IL-1alpha (hIL-1alpha) and exhibits a severe arthritic phenotype characterized by autonomous synovial proliferation with subsequent cartilage destruction. Because the transgene encoded Lys(64) to Ala(271) of the hIL-1alpha amino acid sequence, Tg mice may overproduce MA-IL-1 as well as soluble IL-1alpha. The present study investigated whether MA-IL-1 contributes to synovial proliferation and cartilage destruction in the development of arthritis. Flow cytometric analysis revealed that both macrophage-like and fibroblast-like synoviocytes constitutively produce MA-IL-1. D10 cell proliferation assay revealed MA-IL-1 bioactivity of paraformaldehyde-fixed synoviocytes and the further induction of endogenous mouse MA-IL-1 via autocrine mechanisms. MA-IL-1 expressed on synoviocytes triggered synoviocyte self-proliferation through cell-to-cell (i.e., juxtacrine) interactions and also promoted proteoglycan release from the cartilage matrix in chondrocyte monolayer culture. Interestingly, the severity of arthritis was significantly correlated with MA-IL-1 activity rather than with soluble IL-1alpha activity or concentration of serum hIL-1alpha. Moreover, when the Tg1706 line was compared with the Tg101 line, which selectively overexpresses the 17-kDa mature hIL-1alpha, the severity of arthritis was significantly higher in the Tg1706 line than in the Tg101 line. These results suggest that MA-IL-1 contributes to synoviocyte self-proliferation and subsequent cartilage destruction in inflammatory joint disease such as rheumatoid arthritis.  相似文献   

17.
Soluble complexes were formed between C1q, a subunit of the first component of human complement, and four different Waldenstr?m IgM proteins at reduced ionic strengths. The equilibria between these complexes and the free proteins were studied in the ultracentrifuge. Complex formation was found to be a very sensitive function of the salt concentration, and at physiological ionic strength complex formation was negligible. The complexes were cross-linked with a water-soluble carbodiimide and separated by sucrose gradient centrifugation. Both 22 S 1:1 and 26 S 2:1 C1q X IgM complexes were formed; stoichiometry was established by cross-linking 125I-C1q with 131I-IgM and determining the ratios of the specific activities of the gradient-purified materials. The association process was studied as a function of protein concentration and was analyzed by Scatchard and Hill plots to yield stoichiometry, association constant, and degree of cooperativity. The results indicated that IgM has two identical and independent binding sites for C1q. The intrinsic association constant was found to vary between 10(6) M-1 at 0.084 M ionic strength to 10(4) M-1 at physiological ionic strength; the slope of the log-log plot gave a value of -6.0. The cross-linked complexes were examined by electron microscopy, and the C1q appeared to be attached to the IgM through the C1q heads, implying that the biologically significant binding sites were involved in this interaction. For the 2:1 complexes, the two C1q appeared to attach to opposite surfaces of the IgM, suggesting the presence of a pseudo-2-fold axis lying in the plane of the IgM disk.  相似文献   

18.
Ligand-complexed C-reactive protein (CRP), like aggregated or complexed IgG, can react with C1q and activate the classical C pathway. Whereas IgG is known to bind to the globular region and not to the collagen-like region (CLR) of C1q, the site of interaction of C1q with CRP has not been defined. CRP-trimers were prepared by cross-linking and found to bind to C1q and to activate the C system. Heat-aggregated IgG (Agg-IgG) did not block the binding of CRP-trimers to C1q, nor did CRP-trimers block binding of Agg-IgG to C1q, suggesting that CRP and IgG bind at different sites. ELISA and Western blot analysis showed that CRP-trimers bound to the CLR, whereas Agg-IgG bound only to the globular region; similarly, anti-CLR mAb inhibited binding of CRP-trimers to C1q whereas anti-globular region mAb did not. Reactivity with CRP-trimers as well as with Agg-IgG was retained after reduction/alkylation and SDS treatment of C1q. A group of 22 anti-CRP mAb directed against at least six distinct native-CRP epitopes and eight distinct neo-CRP epitopes was tested for ability to inhibit the CRP-CLR interaction; one mAb, anti-native CRP mAb 8D8, with strong inhibitory activity was identified. Fab' of 8D8 blocked binding of CRP-trimers to intact C1q as well as CLR, and also inhibited CRP (CRP-trimers and CRP-protamine complexes) induced C activation, but had no effect on C1q binding or C activation by Agg-IgG. These results indicate that a conformation-determined region on CRP binds to a sequence-determined region on the CLR of C1q in an interaction which leads to C activation. Anti-CRP and anti-C1q mAb that specifically inhibit this interaction are described.  相似文献   

19.
The first step in the activation of the classical complement pathway by immune complexes involves the binding of the globular domain (gC1q) of C1q to the Fc regions of aggregated IgG or IgM. Each gC1q domain is a heterotrimer of the C-terminal halves of one A (ghA), one B (ghB), and one C (ghC) chain. Our recent studies have suggested a modular organization of gC1q, consistent with the view that ghA, ghB, and ghC are functionally autonomous modules and have distinct and differential ligand-binding properties. Although C1q binding sites on IgG have been previously identified, the complementary interacting sites on the gC1q domain have not been precisely defined. The availability of the recombinant constructs expressing ghA, ghB, and ghC has allowed us, for the first time, to engineer single-residue substitution mutations and identify residues on the gC1q domain, which are involved in the interaction between C1q and IgG. Because C1q is a charge pattern recognition molecule, we have sequentially targeted arginine and histidine residues in each chain. Consistent with previous chemical modification studies and the recent crystal structure of gC1q, our results support a central role for arginine and histidine residues, especially Arg(114) and Arg(129) of the ghB module, in the C1q-IgG interaction.  相似文献   

20.
H P Heinz  D Brackertz  M Loos 《FEBS letters》1988,228(2):332-336
Native serum C1q, the collagenous-like subcomponent of the first component of complement, is not recognized by polyclonal anti-collagen type II antibodies. However, when purified C1q was subjected to limited proteolysis by collagenase it showed antigenic cross-reactivity with collagen type II. The same cross-reactivity was observed with hemolytically active C1q in synovial fluids of patients with rheumatoid arthritis (RA), whereas C1q from synovial fluids of patients with osteoarthritis (OA), villo-nodular synovitis and ankylosing spondylitis was not recognized by this antibody. However, incubation of synovial fluid C1q of OA patients with synovial fluid leucocytes from RA patients led to an alteration of OA-C1q which was now recognized by the anti-collagen type II antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号