首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purified mannitol-specific enzyme II (EIImtl), in the presence of the detergent Lubrol, catalyzes the phosphorylation of mannitol from P-HPr via a classical ping-pong mechanism involving the participation of a phosphorylated EIImtl intermediate. This intermediate has been demonstrated by using radioactive phosphoenolpyruvate. Upon addition of mannitol, at least 80% of the enzyme-bound phosphoryl groups can be converted to mannitol 1-phosphate. The EIImtl concentration dependence of the exchange reaction indicates that self-association is a prerequisite for catalytic activity. The self-association can be achieved by increasing the EIImtl concentration or at low concentrations of EIImtl by adding HPr or bovine serum albumin. The equilibrium is shifted toward the dissociated form by mannitol 1-phosphate, resulting in a mannitol 1-phosphate induced inhibition. Mannitol does not affect the association state of the enzyme. Both mannitol and mannitol 1-phosphate also act as classical substrate inhibitors. The apparent Ki of each compound, however, is approximately equal to its apparent Km, suggesting that mannitol and mannitol 1-phosphate bind at the same site on EIImtl. Due to strong inhibition provided by mannitol and mannitol 1-phosphate in the exchange reaction, the kinetics of this reaction cannot be used to determine whether the reaction proceeds via a ping-pong or an ordered reaction mechanism.  相似文献   

2.
The extreme C-terminus (Ser-490 to Lys-637) of the Escherichia coli EIImtl was subcloned to test structural and mechanistic proposals about the existence of an EIII-like domain in this enzyme. Oligonucleotide-directed mutagenesis was used to produce a unique NcoI restriction site and, at the same time, to change Ser-490 into methionine in a flexible region in front of the proposed EIII-like domain. The 16-kDa C-terminal domain (CI) was overexpressed in Escherichia coli, purified, and analyzed in vitro for catalytic activity in the presence of an EIImtl mutated at its first phosphorylation site, His-554 (EII-H554A). The results presented show that this domain can be expressed as a structurally stable, enzymatically active entity which is able to restore the PEP-dependent phosphorylation activity of the mutant EIImtl-H554A to 25% of wild-type levels. To demonstrate the EIII activity of the CI domain in a more direct way, we also substituted it for EIIImtl in the Staphylococcus carnosus system. The CI domain was active in transferring the phosphoryl group to Staph. carnosus EII; however, it was 6.5 times less active compared to Staph. carnosus EIIImtl itself. EIIImtl from Staph. carnosus, on the other hand, was able to substitute for the isolated C-terminal domain in the E. coli mannitol phosphorylation assay; however, it appeared to be 2 or 3 times less effective.  相似文献   

3.
Sulfhydryl reagents affected the binding properties of the translocator domain, NIII, of enzyme IImtl in two ways: (i) the affinity for mannitol was reduced, and (ii) the exchange rate of bound and free mannitol was increased. The effect on the affinity was very much reduced after solubilization of enzyme IImtl in the detergent decylPEG. The effects were caused exclusively by reaction of the sulfhydryl reagents with the cysteine residue at position 384 in the primary sequence. Interaction between two domains is involved, since Cys384 is located in the cytoplasmic domain, CII. When Cys384 was mutated to serine, the enzyme exhibited the same binding properties as the chemically modified enzyme. The data support our proposal that phosphorylation of enzyme IImtl drastically reduces the activation energy for the translocation step through interaction between domains CII and NIII [Lolkema J. S., ten Hoeve-Duurkens, R. H., Swaving Dijkstra, D., & Robillard, G. T. (1991) Biochemistry (preceding paper in this issue)]. Functional interaction between the translocator domain, NIII, and domain CI was investigated by phosphorylation of His554, located in domain CI, in the C384S mutant. No effect on the binding properties was observed. In addition, the binding properties were insensitive to the presence of the soluble phosphotransferase components enzyme I and HPr.  相似文献   

4.
Mannitol bound to enzyme IImtl could be trapped specifically by rapid phosphorylation with P-HPr. The assay was used to demonstrate transport of mannitol across the cytoplasmic membrane with and without phosphorylation of mannitol. The latter was 2-3 orders of magnitude slower. The fraction of bound mannitol molecules that was actually phosphorylated, the efficiency of the trap, was less than 50%. The efficiency was not very different for enzyme IImtl embedded in the membrane of vesicles with an inside-out orientation or solubilized in detergent. Subsequently, it is argued that the fraction of the bound mannitol molecules that was not phosphorylated dissociated into the cytoplasmic space. A model for the catalytic mechanism of enzyme IImtl is proposed on the basis of interpretations of the present experiments. The main features of the model are the following: (i) mechanistically, the coupling between transport and phosphorylation is less than 50%; (ii) in the physiological steady state of mannitol transport and metabolism, the coupling is 100%; (iii) phosphorylated enzyme IImtl catalyzes facilitated diffusion at a high rate; (iv) the state of phosphorylation of the cytoplasmic domain modulates the activity of the translocator domain; (v) the enzyme catalyzes phosphorylation of free cytoplasmic mannitol at least as fast as it catalyzes transport plus phosphorylation of free periplasmic mannitol.  相似文献   

5.
The kinetics of binding of mannitol to enzyme IImtl embedded in the membrane of vesicles with an inside-out or a right-side-out orientation were analyzed at 4 degrees C in the absence of the phosphoryl group donor, P-HPr. The binding to the right-side-out oriented vesicles equilibrated too fast to be monitored by the flow dialysis technique. On the other hand, with the inside-out oriented membrane vesicles two conformational changes of the enzyme could be detected kinetically. One change involved a recruitment of binding sites from a state of the enzyme where the binding sites were inaccessible from the cytoplasmic volume. The second change involved a conformational change of the enzyme that followed upon the initial binding to the cytoplasmic-facing binding site leading to a state with a higher affinity for mannitol. Equilibrium binding to the inside-out and right-side-out oriented membrane vesicles at 4 degrees C indicated that the two transitions did not represent the translocation of the binding site, free and with mannitol bound to it, to the other side of the membrane. Instead, a model is proposed in which the conformational changes represent transitions from states with the binding pocket opened to the cytoplasmic side of the membrane to occluded states of the enzyme in which the binding sites, with or without mannitol bound, are not accessible to either side of the membrane.  相似文献   

6.
The enzyme IImannitol (EIImtl) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) catalyses the uptake and concomitant phosphorylation of mannitol by bacteria; it is specified by the gene mtlA. MtlA is located near the genes mtlF and mtlD in the staphylococcal genome, encoding the enzyme IIImtl and the mannitol-1-phosphate dehydrogenase, respectively. We present the cloning of the whole operon by a novel complementation system which is generally suitable for cloning Gram-positive PTS genes. The nucleotide sequence of a 2.5-kbp subclone spanning mtlA has been determined. From the deduced amino acid sequence, it is predicted that the membrane-protein EIImtl consists of 505 amino acid residues (54112 Da). The protein has the expected hydropathy profile of an integral-membrane protein. The NH2-terminal part of the enzyme resides within the membrane, whereas the COOH-terminus of the enzyme has the properties of a soluble protein. Comparison with the known amino acid sequence of EIImtl of Escherichia coli [Lee, C. A. & Saier, M. H. (1983) J. Biol. Chem. 258, 10761-10767] showed significant similarity. The motif containing the cysteine, which is the putative second phosphorylation site in EIImtl of E. coli [Pas, H. H. & Robillard, G. T. (1988) Biochemistry 27, 5835-5839], is well conserved in EIImtl of Staphylococcus carnosus. Chemical modification of the single active site cysteine residue by Ellman's reagent leads to total inactivation, which can be reversed by treatment with 2-mercaptoethanol.  相似文献   

7.
J S Lolkema  G T Robillard 《Biochemistry》1990,29(43):10120-10125
The original proposal of Saier stating that P-enolpyruvate-dependent mannitol phosphorylation is catalyzed by the monomeric form of the bacterial phosphotransferase enzyme IImtl, which would be the form predominantly existing in the phospholipid bilayer, whereas mannitol/mannitol-P exchange would depend on the transient formation of functional dimers, is refuted [Saier, M.H. (1980) J. Supramol. Struct. 14, 281-294]. The correct interpretation of the proportional relation between the rate of mannitol phosphorylation in the overall reaction and the enzyme concentration is that enzyme IImtl is dimeric under the conditions employed. Differences measured in the enzyme concentration dependency of the overall and exchange reactions were caused by different assay conditions. The dimer is favored over the monomer at high ionic strength and basic pH. Mg2+ ions bind specifically to enzyme IImtl, inducing dimerization. A complex formed by mixing inorganic phosphate, F-, and Mg2+ at sufficiently high concentrations inhibits enzyme IImtl, in part, by dissociation of the dimer. Enzyme IImtl was dimeric in 25 mM Tris, pH 7.6, and 5 mM Mg2+ over a large enzyme concentration range and under many different turnover conditions. The association/dissociation equilibrium was demonstrated in phosphate bufers, pH 6.3. The dimer was the most active form both in the overall and in the exchange reaction under the conditions assayed. The monomer was virtually inactive in mannitol/mannitol-P exchange but retained 25% of the activity in the overall reaction.  相似文献   

8.
9.
The occurrence of intermolecular dithiols on EIImtl has been studied with a number of thiol-specific cross-linking reagents. The reaction of EIImtl with bifunctional maleimide derivatives inactivates the enzyme. At the same time the enzyme is irreversibly cross-linked to a dimeric species. Under optimal conditions 50% of the protein is cross-linked upon reaction with the dimaleimides. The enzyme is also cross-linked under oxidizing conditions in the presence of CuCl2, presumably by oxidizing an intermolecular dithiol to a disulfide. This oxidation can be reversed by the addition of the reducing agent dithiothreitol. The reaction of phosphorylated EIImtl with the same sulfhydryl-specific bifunctional reagents does not lead to any cross-linked product. The results are discussed in terms of the association state of the purified protein and the distribution of its thiol groups.  相似文献   

10.
H H Pas  J C Ellory  G T Robillard 《Biochemistry》1987,26(21):6689-6696
The quaternary structure of the membrane-bound mannitol permease (EIIMtl) of the bacterial phosphotransferase system in Escherichia coli has been investigated in the membrane by using the radiation inactivation method. The experiments reveal two distinct but interconvertible forms of the permease. The first state is a dimer, and the second state consists of a less active higher molecular weight complex involving the dimer. The equilibrium between these two forms in the membrane can be shifted by changing the pH. At pH 8.1 the dimer is the dominant form. Decreasing the pH results in increased binding of a regulatory protein to the dimer, thus increasing the amount of the higher molecular weight form involving the dimer. Cross-linking EIIMtl in situ, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting, resulted in the formation of two cross-linked forms. One is the dimer, and the other has a higher molecular weight. Two-dimensional electrophoresis using a reversible cross-linker revealed no other protein except EIIMtl in these complexes.  相似文献   

11.
The inducible, mannitol-specific Enzyme II of the phosphoenolpyruvate:sugar phosphotransferase system has been purified approximately 230-fold from Escherichia coli membranes. The enzyme, initially solubilized with deoxycholate, was first subjected to hydrophobic chromatography on hexyl agarose and then purified by several ion exchange steps in the presence of the nonionic detergent, Lubrol PX. The purified protein appears homogeneous by several criteria and probably consists of a single kind of polypeptide chain with a molecular weight of 60,000 (+/- 5%). In addition to catalyzing phosphoenolpyruvate-dependent phosphorylation of mannitol in the presence of the soluble enzymes of the phosphotransferase system, the purified Enzyme II also catalyzes mannitol 1-phosphate:mannitol transphosphorylation in the absence of these components. A number of other physical and catalytic properties of the enzyme are described. The availability of a stable, homogeneous Enzyme II should be invaluable for studying the mechanism of sugar translocation and phosphorylation catalyzed by the bacterial phosphotransferase system.  相似文献   

12.
13.
The cytoplasmic C-terminal domain, residues 348-637, and the membrane-bound N-terminal domain, residues 1-347, of EIImtl have been subcloned and expressed in Escherichia coli. The N-terminal domain, IICmtl, contains the mannitol binding site, and the C-terminal domain, IIBAmtl, contains the activity-linked phosphorylation sites, His-554 and Cys-384. Overexpression of the BA domain was achieved by a translational in-frame fusion of the gene with the cro ATG start codon, downstream of the strong PR promoter of phage lambda. The domain has been purified and characterized in in vitro complementation assays. It possessed no mannitol phosphorylation activity itself but was able to restore the phosphoenolpyruvate-dependent phosphorylation activity of two EIImtl phosphorylation site mutants, lacking His-554 or Cys-384. The complementary N-terminal domain was also expressed. Membranes possessing IICmtl were unable to phosphorylate mannitol at the expense of phosphoenolpyruvate. However, when the membranes were combined with the purified C-terminal domain, mannitol phosphorylation activity was restored. Mannitol transport and phosphorylation were also restored in vivo when the two plasmids encoding the N- and C-terminal domains were expressed in the same cell. These data demonstrate the existence of structurally and functionally distinct domains in EIImtl: a cytoplasmic domain with phosphorylating activity and a membrane-bound N-terminal domain which, in the presence of the cytoplasmic domain, is able to actively transport and phosphorylate mannitol. The ability to separate, overproduce, and purify structurally stable, enzymatically active domains opens the way for 3D structural studies as well as complete kinetic analysis of the activities of the individual domains and their interactions.  相似文献   

14.
A digoxigenin-labeled DNA probe that was complementary to the gene ptsH and the beginning of the gene ptsI was used to clone a 3.2-kb HincII-BamHI restriction fragment containing the complete ptsI gene of Staphylococcus carnosus. The restriction fragment was cloned in the antisense orientation to the lac promoter in the low-copy-number vector pSU18. The nucleotide sequences of the ptsI gene, which encodes enzyme I (EC 2.7.3.9), and the corresponding flanking regions were determined. The primary translation product, derived from the nucleotide sequence, consists of 574 amino acids and has a calculated molecular weight of 63,369. Amino acid sequence comparison showed 47% similarity to enzyme I of Escherichia coli and 37% similarity to the enzyme I domain of the multiphosphoryl transfer protein of Rhodobacter capsulatus. The histidinyl residue at position 191 could be identified as the probable phosphoenolpyruvate-dependent phosphorylation site of enzyme I of S. carnosus because of sequence homologies with the peptide sequences of enzyme I-active sites of Enterococcus faecalis and Lactococcus lactis. Several in vivo and in vitro complementation studies with the enzyme I ptsI genes of S. carnosus and the E. coli ptsI mutant JLT2 were carried out. The generation times and interaction between enzyme I with histidine-containing protein from gram-positive and gram-negative bacteria were measured in a phosphoryl group transfer test.  相似文献   

15.
The bacterial phosphoenolpyruvate-dependent sugar phosphotransferase system (PEP-PTS) is essential in the coupled transportation and phosphorylation of various types of carbohydrates. The CmtAB proteins of Escherichia coli are sequentially similar to the mannitol-specific phosphotransferase MtlA. The CmtB protein corresponds to the phosphotransferase enzyme IIA component. Here we report the solution structure of CmtB from E. coli at high resolution by NMR spectroscopy. The results show that CmtB adopts a globular fold consisting of a central mixed five-strand β-sheet flanked by seven helices at both sides. Structural comparison with the IIA domain of MtlA (IIAMtl) reveals high overall similarity, while notable conformational differences at the active site are observed. The active site pocket of CmtB appears to be wider, and the hydrophobic regions around it is larger compared to IIAMtl. Further, the essential arginine residue at the active site of IIAMtl is substituted by a serine in CmtB. Instead, the active pocket of CmtB contains another arginine at a distinct position, suggesting different molecular mechanisms for phosphoryl transfer.  相似文献   

16.
The quantitative effects of variations in the amount of enzyme IIGlc of the phosphoenolpyruvate:glucose phosphotransferase system (PTS) on glucose metabolism in Escherichia coli were studied. The level of enzyme IIGlc could be adjusted in vivo to between 20 and 600% of the wild-type chromosomal level by using the expression vector pTSG11. On this plasmid, expression of the structural gene for enzyme IIGlc, ptsG, is controlled by the tac promoter. As expected, the control coefficient (i.e., the relative increase in pathway flux, divided by the relative increase in amount of enzyme) of enzyme IIGlc decreased in magnitude if a more extensive pathway was considered. Thus, at the wild-type level of enzyme IIGlc activity, the control coefficient of this enzyme on the growth rate on glucose and on the rate of glucose oxidation was low, while the control coefficient on uptake and phosphorylation of methyl alpha-glucopyranoside (an enzyme IIGlc-specific, nonmetabolizable glucose analog) was relatively high (0.55 to 0.65). The implications of our findings for PTS-mediated regulation, i.e., inhibition of growth on non-PTS compounds by glucose, are discussed.  相似文献   

17.
The histidine-containing protein (HPr) of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS) was isolated from Staphylococcus carnosus and purified to homogeneity. The protein sequence was determined by Edman degradation of peptides obtained by proteolytic digestion with proteases V8, trypsin and chemical cleavage with BrCN. Furthermore, immunological screening of a chromosomal S. carnosus DNA gene library in pUC19 vector enabled us to isolate S. carnosus HPr-expressing colonies. The nucleotide sequence of this ptsH gene and its flanking regions was determined by the dideoxy-chain-termination technique. Upstream, the 264-bp open reading frame of the ptsH gene is flanked by a putative S. carnosus promoter structure and a putative ptsI gene downstream suggesting that ptsH gene is the first gene in the PTS operon of S. carnosus. Comparison of the amino acid sequence of S. carnosus HPr with the HPr sequence of Staphylococcus aureus (derived from peptide sequencing) showed a high degree of similarity.  相似文献   

18.
The Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system consists of three components: a membrane-bound enzyme II, a soluble enzyme I, and a soluble phosphocarrier protein, HPr. The HPr has been purified to homogeneity by a combination of ammonium sulfate precipitations, gel filtration and diethylaminoethyl, carboxymethyl Bio-Gel A, and hydroxylapatite column chromatography. The purified protein is relatively heat stable (ca. 50% activity survives 30 min of boiling) and has a molecular weight of ca. 10,000 (determined by sodium dodecyl sulfate-gel electrophoresis and amino acid analysis). It contains a single histidine residue per molecule and can be totally inactivated by photooxidation with Rose Bengal dye. Although the mycoplasma HPr is very similar to that of Escherichia coli, it shows no significant association with antiserum produced against E. coli HPr.  相似文献   

19.
This review summarizes the recent developments in identifying the activity-linked cysteine as one of the phosphorylation sites on the mannitol-specific EII of the E. coli phosphoenolpyruvate-dependent mannitol transport system. Two phosphorylation sites have been identified, one being the HPr/P-HPr exchange site, the other being the mannitol/mannitol-P exchange site. The activity-linked cysteine and the second phosphorylation site are located in the same 14 residue peptide. Phosphorylation of the second site and phosphoryl group transfer to mannitol do not occur as long as the activity-linked cysteine is oxidized or alkylated.A kinetic scheme has been developed which accounts for the relationships between the redox state, the phosphorylation state and the activity of the carrier. Kinetics of the individual reactions determine whether the enzyme cycles through an oxidized/reduced state during a cycle of phosphorylation/dephosphorylation.Abbreviations DTT Dithiothreitol - glc glucose - mtl mannitol - mtl-P mannitol Phosphate - frc fructose - bgl -glucoside - nag N-acetylglucosamine - PTS Phosphoenolpyruvate-dependent Phosphotransferase System - PEP Phosphoenolpyruvate - P-enolpyruvate Phosphoenolpyruvate  相似文献   

20.
The mannitol transport protein (EIImtl) carries out translocation with concomitant phosphorylation of mannitol from the periplasm to the cytoplasm, at the expense of phosphoenolpyruvate (PEP). The phosphoryl group which is needed for this group translocation is sequentially transferred from PEP via two phosphorylation sites, located exclusively on the C-terminal cytoplasmic domain, to mannitol. Oligonucleotide-directed mutagenesis was used to investigate the precise role of these sites in phosphoryl group transfer, by producing specific amino acid substitutions. The first phosphorylation site, His-554 (P1), was replaced by Ala, which renders the EII-H554A completely inactive in PEP-dependent mannitol phosphorylation, but not in mannitol/mannitol 1-phosphate exchange. The P2 site mutant, EII-C384S, was inactive both in the mannitol phosphorylation reaction and in the exchange reaction, due to replacement of the essential Cys-384 by Ser. Although EII-H554A and EII-C384S were both catalytically inactive in the PEP-dependent phosphorylation, EII-C384S was able to restore up to 55% of the wild-type mannitol phosphorylation activity with the EII-H554A mutant, indicating a direct phosphotransfer between two subunits. These phosphorylation data together with the data obtained from mannitol/mannitol phosphate exchange kinetics, after mixing EII-H554A and EII-C384S, indicated the formation of functionally stable heterodimers, which consist of an EII-H554A and an EII-C384S monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号