首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vaccinia virus 14-kDa protein (encoded by the A27L gene) plays an important role in the biology of the virus, acting in virus-to-cell and cell-to-cell fusions. The protein is located on the surface of the intracellular mature virus form and is essential for both the release of extracellular enveloped virus from the cells and virus spread. Sequence analysis predicts the existence of four regions in this protein: a structureless region from amino acids 1 to 28, a helical region from residues 29 to 37, a triple coiled-coil helical region from residues 44 to 72, and a Leu zipper motif at the C terminus. Circular dichroism spectroscopy, analytical ultracentrifugation, and chemical cross-linking studies of the purified wild-type protein and several mutant forms, lacking one or more of the above regions or with point mutations, support the above-described structural division of the 14-kDa protein. The two contiguous cysteine residues at positions 71 and 72 are not responsible for the formation of 14-kDa protein trimers. The location of hydrophobic residues at the a and d positions on a helical wheel and of charged amino acids in adjacent positions, e and g, suggests that the hydrophobic and ionic interactions in the triple coiled-coil helical region are involved in oligomer formation. This conjecture was supported by the construction of a three-helix bundle model and molecular dynamics. Binding assays with purified proteins expressed in Escherichia coli and cytoplasmic extracts from cells infected with a virus that does not produce the 14-kDa protein during infection (VVindA27L) show that the 21-kDa protein (encoded by the A17L gene) is the specific viral binding partner and identify the putative Leu zipper, the predicted third α-helix on the C terminus of the 14-kDa protein, as the region involved in protein binding. These findings were confirmed in vivo, following transfection of animal cells with plasmid vectors expressing mutant forms of the 14-kDa protein and infected with VVindA27L. We find the structural organization of 14kDa to be similar to that of other fusion proteins, such as hemagglutinin of influenza virus and gp41 of human immunodeficiency virus, except for the presence of a protein-anchoring domain instead of a transmembrane domain. Based on our observations, we have established a structural model of the 14-kDa protein.  相似文献   

2.
C F Lai  S C Gong    M Esteban 《Journal of virology》1991,65(10):5631-5635
Vaccinia virus (VV) was successfully used as a live vaccine to eradicate smallpox, but the nature of viral proteins involved in eliciting viral immunity has not yet been identified. A potential candidate is a 14-kDa VV envelope protein that is involved in virus penetration at the level of virus-cell fusion, in cell-cell fusion late in infection, and in virus dissemination. The 14-kDa envelope protein has been produced in Escherichia coli, with properties similar to those of the native protein found in the virus particle and in infected cells (C. Lai, S. Gong, and M. Esteban, J. Biol. Chem. 256:22174-22180, 1990). In this investigation, we showed that mice immunized with purified VV 14-kDa protein synthesized in E. coli in the form of a monomer or a trimer develop high-titer neutralizing antibodies and are protected when challenged with lethal doses of wild-type VV. Our findings demonstrate that it is possible to confer protection against VV through immunization with the 14-kDa envelope protein.  相似文献   

3.
The mechanism by which the 14-kDa fusion protein of vaccinia virus (VV) is anchored in the envelope of intracellular naked virions (INV) is not understood. In this investigation, we demonstrate that the 14-kDa protein interacts with another virus protein with an apparent molecular mass of 21 kDa. Microsequence analysis of the N terminus of the 21-kDa protein revealed that this protein is encoded by the VV A17L gene. The 21-kDa protein is processed from a 23-kDa precursor, by cleavage at amino acid position 16, at the consensus motif Ala-Gly-Ala, previously identified as a cleavage site for several VV structural proteins. The 21-kDa protein contains two large internal hydrophobic domains characteristic of membrane proteins. Pulse-chase analysis showed that within 1 h after synthesis, the 14-kDa protein forms a stable complex with the 21-kDa protein. Formation of the complex was not inhibited by rifampin, indicating that the interaction between these two proteins occurs prior to virion morphogenesis. Immunoprecipitation analysis of disrupted virions showed the presence of the 21-kDa protein in the viral particle. Release of the 14-kDa-21-kDa protein complex from INV required treatment with the nonionic detergent Nonidet P-40 and a reducing agent. The protein complex consisted of 14-kDa trimers and of 21-kDa dimers. Since the 14-kDa fusion protein lacks a signal sequence and a large hydrophobic domain characteristic of membrane proteins, our findings suggest that the 21-kDa protein serves to anchor the 14-kDa protein to the envelope of INV.  相似文献   

4.
Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV), which bind to unidentified and possibly different cellular receptors. Studies of VV binding have been hampered by having two infectious virions and by the rupture of the EEV outer membrane in the majority of EEV virions during purification. To overcome these problems, we have developed a novel approach to study VV binding that is based on confocal microscopy and does not require EEV purification. In this assay, individual virus particles adsorbed to the cell are simultaneously distinguished and quantified by double immunofluorescence labelling with antibody markers for EEV and IMV. By this method, we show unequivocally that IMV and EEV bind to different cellular receptors. Three independent observations allow this conclusion. First, the efficiencies with which IMV and EEV bind to different cell lines are unrelated; second, cell surface digestion with some enzymes affects IMV and EEV binding differently; and third, the binding of a monoclonal antibody to cells prevents IMV binding but not EEV binding. This technique may be widely applicable for studying the binding of different viruses.  相似文献   

5.
We previously showed that vaccinia virus infection of BSC40 cells was blocked by soluble heparin, suggesting that cell surface heparan sulfate mediates vaccinia virus binding (C.-S. Chung, J.-C. Hsiao, Y.-S. Chang, and W. Chang, J. Virol. 72:1577–1585, 1998). In this study, we extended our previous work and demonstrated that soluble A27L protein bound to heparan sulfate on cells and interfered with vaccinia virus infection at a postbinding step. In addition, we investigated the structure of A27L protein that provides for its binding to heparan sulfate on cells. A mutant of A27L protein, named D-A27L, devoid of a cluster of 12 amino acids rich in basic residues, was constructed. In contrast to the soluble A27L protein, purified D-A27L protein was inactive in all of our assays, including binding to heparin in vitro, binding to heparan sulfate on cells, and the ability to block virus infection. These data demonstrated that the N-terminal region acts as a glycosaminoglycan (GAG)-binding domain critical for A27L protein binding to cells. Previously A27L protein was thought to be involved in fusion of virus-infected cells induced by acid treatment. When we investigated whether cell surface GAGs also participate in A27L-dependent fusion, our results indicated that soluble A27L protein blocked cell fusion, whereas D-A27L protein did not. Taken together, the results therefore demonstrated that A27L-mediated cell fusion is triggered by its interaction with cell surface GAGs through the N-terminal domain.  相似文献   

6.
Vaccinia virus is the prototypical member of the family Poxviridae. Three morphologically distinct forms are produced during infection: intracellular mature virions (IMV), intracellular enveloped virions (IEV), and extracellular enveloped virions (EEV). Two viral proteins, F12 and A36, are found exclusively on IEV but not on IMV and EEV. Analysis of membranes from infected cells showed that F12 was only associated with membranes and is not an integral membrane protein. A yeast two-hybrid assay revealed an interaction between amino acids 351 to 458 of F12 and amino acids 91 to 111 of A36. We generated a recombinant vaccinia virus that expresses an F12, which lacks residues 351 to 458. Characterization of this recombinant revealed a small-plaque phenotype and a subsequent defect in virus release similar to a recombinant virus that had F12L deleted. In addition, F12 lacking residues 351 to 458 was unable to associate with membranes in infected cells. These results suggest that F12 associates with IEV through an interaction with A36 and that this interaction is critical for the function of F12 during viral egress.  相似文献   

7.
The vaccinia virus (VV) A33R gene encodes a highly conserved 23- to 28-kDa glycoprotein that is specifically incorporated into the viral outer envelope. The protein is expressed early and late after infection, consistent with putative early and late promoter sequences. To determine the role of the protein, two inducible A33R mutants were constructed, one with the late promoter and one with the early and late A33R promoter elements. Decreased A33R expression was associated with small plaques that formed comets in liquid medium. Using both an antibiotic resistance gene and a color marker, an A33R deletion mutant, vA33Δ, was isolated, indicating that the A33R gene is not essential for VV replication. The plaques formed by vA33Δ, however, were tiny, indicating that the A33R protein is necessary for efficient cell-to-cell spread. Rescue of the large-plaque phenotype was achieved by inserting a new copy of the A33R gene into the thymidine kinase locus, confirming the specific genetic basis of the phenotype. Although there was a reduction in intracellular virus formed in cells infected with vA33Δ, the amount of infectious virus in the medium was increased. The virus particles in the medium had the buoyant density of extracellular enveloped viruses (EEV). Additionally, amounts of vA33Δ cell-associated extracellular enveloped viruses (CEV) were found to be normal. Immunogold electron microscopy of cells infected with vA33Δ demonstrated the presence of the expected F13L and B5R proteins in wrapping membranes and EEV; however, fully wrapped vA33Δ intracellular enveloped viruses (IEV) were rare compared to partially wrapped particles. Specialized actin tails that propel IEV particles to the periphery and virus-tipped microvilli (both common in wild-type-infected cells) were absent in cells infected with vA33Δ. This is the first deletion mutant in a VV envelope gene that produces at least normal amounts of fully infectious EEV and CEV and yet has a small-plaque phenotype. These data support a new model for VV spread, emphasizing the importance of virus-tipped actin tails.  相似文献   

8.
We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.  相似文献   

9.
10.
An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L(-)) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L(-) mutant virus. IMV from the H3L(-) mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L(-) mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.  相似文献   

11.
The vaccinia virus (VV) A17L gene encodes a 21- to 23-kDa virion component that forms a stable complex with the 14-kDa envelope protein (A27L gene). In a previous report, we described the construction of a VV recombinant, VVindA17L, in which the expression of the A17L gene is inducibly regulated by isopropyl-beta-D-thiogalactoside (IPTG). We demonstrated that shutoff of the A17L gene results in a blockade of virion morphogenesis at a very early stage (D. Rodríguez, M. Esteban, and J. R. Rodríguez, J. Virol. 69:4640-4648, 1995). In the present study, we show that virus growth is restored if the inducer is provided not later than 6 h postinfection. Immunofluorescence and immunoelectron microscopy analysis of VVindA17L-infected cells revealed that in the absence of the 21- to 23-kDa protein, the 14-kDa protein is distributed throughout the cytoplasm. After IPTG addition, the 14-kDa protein can be detected around viral factories and immature virions; at later times, it localizes in the external membranes of intracellular mature virions. Immunoelectron microscopy with anti-21- to 23-kDa antibodies showed that soon after induction, the protein accumulates in membranes of the rough endoplasmic reticulum and in the nuclear envelope. With time, the protein localizes in viral crescents and subsequently associates to the membranes of immature and intracellular mature virions. These results are consistent with a model in which the 21- to 23-kDa protein would be synthesized at the endoplasmic reticulum, from where the protein could be translocated to the membranes of the intermediate compartment to generate the precursors of the viral membranes. Also, these results argue that 14-kDa envelope protein becomes posttranslationally associated to viral membranes through its interaction with the 21-kDa protein.  相似文献   

12.
Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.Vaccinia virus, the prototype of the Orthopoxvirus genus of the family Poxviridae, infects many cell lines and animals (13) and produces several forms of infectious particles, among which the intracellular mature virus (IMV) is the most abundant form inside cells. The IMV can be wrapped with additional Golgi membrane, transported through microtubules, and released from cells as extracellular enveloped viruses (10). The IMV has evolved to enter host cells through plasma membrane fusion (1, 3, 12, 29, 47) or endocytosis (11, 48). Recently, Mercer et al. reported that IMV entered HeLa cells through apoptotic mimicry and macropinocytosis (32), and Huang et al. reported that IMV enters into HeLa cells through a dynamin-dependent fluid-phase endocytosis that required the cellular protein VPEF (22).The IMV contains more than 75 viral proteins. Of these, more than 10 viral envelope proteins are known to be involved in vaccinia virus entry into cells (6, 34, 55). Vaccinia virus contains at least five attachment proteins, with H3, A27, and D8 binding to cell surface glycosaminoglycans (GAGs) (7, 21, 28), A26 protein binding to the extracellular matrix protein laminin (5), and L1 protein binding to unidentified cell surface molecules (14). A27 protein also binds to the viral A17 protein through its C-terminal region (35, 50), and it was recently shown that the coexpression of A17 and A27 proteins resulted in cell fusion in transiently transfected 293T cells (27). In this study, we demonstrate the formation through disulfide bonds of complexes between two viral attachment proteins, A26 and A27, and we determine the cysteine residues that are critical for these disulfide bonds. We also address the biological role of the A26-A27 protein complex formation in cell fusion regulation.  相似文献   

13.
Vaccinia virus (VV) membrane biogenesis is a poorly understood process. It has been proposed that cellular membranes derived from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) are incorporated in the early stages of virion assembly. We have recently shown that the VV 21-kDa (A17L gene) envelope protein is essential for the formation of viral membranes. In the present work, we identify a 15-kDa VV membrane protein encoded by the A14L gene. This protein is phosphorylated and myristylated during infection and is incorporated into the virion envelope. Both the 21- and 15-kDa proteins are found associated with cellular tubulovesicular elements related to the ERGIC, suggesting that these proteins are transported in these membranes to the nascent viral factories. When synthesis of the 21-kDa protein is repressed, organized membranes are not formed but numerous ERGIC-derived tubulovesicular structures containing the 15-kDa protein accumulate in the boundaries of the precursors of the viral factories. These data suggest that the 21-kDa protein is involved in organizing the recruited viral membranes, while the 15-kDa protein appears to be one of the viral elements participating in the membrane recruitment process from the ERGIC, to initiate virus formation.  相似文献   

14.
Zhang WH  Wilcock D  Smith GL 《Journal of virology》2000,74(24):11654-11662
Vaccinia virus gene F12L is shown to encode a 65-kDa protein that is synthesized early and late during infection and that is not modified by glycosylation. Computational sequence comparison revealed that related proteins are encoded by all sequenced chordopoxviruses. A virus deletion mutant lacking the F12L gene (vDeltaF12L) and a revertant virus with the F12L gene reinserted into the deletion mutant (vF12L-rev) were constructed and analyzed. A version of the F12L gene with a C-terminal amino acid tag derived from the influenza virus hemagglutinin and that is recognized by a monoclonal antibody was also inserted into the F12L locus of vDeltaF12L. Loss of the F12L protein reduced the formation of IMV 2-fold, but there was a dramatic (99.5%) reduction in actin tail formation, and the levels of cell-associated enveloped virus and extracellular enveloped virus were reduced 8- to 11-fold and 7-fold, respectively. Consistent with the lack of actin tail formation, vDeltaF12L produced a very small plaque. The vDeltaF12L virus was severely attenuated in vivo, such that a dose of vDeltaF12L 10,000-fold greater than the dose of wild-type virus that induced severe disease was unable to induce disease in mice infected intranasally.  相似文献   

15.
The vaccinia virus G3L/WR079 gene encodes a conserved protein with a predicted transmembrane domain. Our proteomic analyses of vaccinia virus revealed that G3L protein is incorporated into intracellular mature virus; however, the function of G3L protein in the vaccinia virus life cycle has not been investigated. In this study, a recombinant vaccinia virus, viG3L, expressing G3L protein under IPTG (isopropyl-beta-d-thiogalactopyranoside) regulation was constructed. Under permissive conditions when G3L protein was expressed, the vaccinia virus life cycle proceeded normally, resulting in plaque formation in BSC40 cells. In contrast, under nonpermissive conditions when G3L protein expression was repressed, no plaques were formed, showing that G3L protein is essential for vaccinia virus growth in cell cultures. In infected cells when G3L protein was not expressed, the formation of intracellular mature virus (IMV) and cell-associated enveloped virus occurred normally, showing that G3L protein is not required for virion morphogenesis. IMV particles containing (G3L(+)) or lacking (G3L(-)) G3L protein were purified and were found to be indistinguishable on microscopic examination. Both G3L(+) and G3L(-) IMV bound to HeLa cells; however, G3L(-) IMV failed to enter the cells, showing that G3L protein is required for IMV penetration into cells. Finally, G3L protein was required for fusion of the infected cells under low-pH treatment. Thus, our results provide direct evidence that G3L is an essential component of the vaccinia virus fusion complex, in addition to the previously reported A28, H2, L5, A21, and A16 proteins.  相似文献   

16.
The 27-kDa Rex trans-acting protein appears to be essential for replication of human T-cell leukemia virus type I. Mutations introduced outside of the Rex RNA-binding domain-nucleolar localization signal display either wild-type activity or, conversely, yield dominant-negative proteins. We generated missense mutations in a particular domain of the Rex protein (amino acid residues 54 to 69) which is characterized by a cluster of dominant-negative mutants. Our results indicate that amino acids 57 to 67 are critically important for Rex function mediated through the RxRE cis-acting RNA sequence. Within this domain, only amino acids 61 to 63 could be mutated without loss of function. All other missense and deletion mutants yielded dominant-negative proteins. In vitro RNA-binding studies performed with glutathione S-transferase-Rex fusion proteins demonstrated that all of the mutant Rex proteins interacted specifically with RxRE RNA. Analysis of chimeric Rex-Rev proteins suggests that this Rex domain is important for oligomerization.  相似文献   

17.
Hevein is a chitin-binding protein of 43 amino acids found in the lutoid body-enriched fraction of rubber tree latex. A hevein cDNA clone (HEV1) (Broekaert, W., Lee, H.-i., Kush, A., Nam, C.-H., and Raikhel, N. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7633-7637) encodes a putative signal sequence of 17 amino acids followed by a polypeptide of 187 amino acids. Interestingly, this polypeptide has two distinct domains: an amino-terminal domain of 43 amino acids, corresponding to mature hevein, and a carboxyl-terminal domain of 144 amino acids. To investigate the mechanisms involved in processing of the protein encoded by HEV1, three domain-specific antisera were raised against fusion proteins harboring the amino-terminal domain (N domain), carboxyl-terminal domain (C domain), and both domains (NC domain). Translocation experiments using an in vitro translation system show that the first 17-amino acid sequence encoded by the cDNA functions as a signal peptide. Immunoblot analysis of proteins extracted from lutoid bodies demonstrates that a 5-kDa protein comigrated with purified mature hevein and cross-reacted with N domain- and NC domain-specific antibodies. A 14-kDa protein was recognized by C domain- and NC domain-specific antibodies. A 20-kDa protein was cross-reactive with all three antibodies. Microsequencing data further suggest that the 5-kDa (amino-terminal domain) and 14-kDa (carboxyl-terminal domain) proteins are post-translational cleavage products of the 20-kDa polypeptide (both domains) which corresponds to the proprotein encoded by HEV1. In addition, it was found that the amino-terminal domain could provide chitin-binding properties to a fusion protein bearing it either amino terminally or carboxyl terminally.  相似文献   

18.
Pütz MM  Midgley CM  Law M  Smith GL 《Nature medicine》2006,12(11):1310-1315
Smallpox was eradicated without an adequate understanding of how vaccination induced protection. In response to possible bioterrorism with smallpox, the UK government vaccinated approximately 300 health care workers with vaccinia virus (VACV) strain Lister. Antibody responses were analyzed using ELISA for multiple surface antigens of the extracellular enveloped virus (EEV) and the intracellular mature virus (IMV), plaque reduction neutralization and a fluorescence-based flow cytometric neutralization assay. Antibody depletion experiments showed that the EEV surface protein B5 is the only target responsible for EEV neutralization in vaccinated humans, whereas multiple IMV surface proteins, including A27 and H3, are targets for IMV-neutralizing antibodies. These data suggest that it would be unwise to exclude the B5 protein from a future smallpox vaccine. Repeated vaccination provided significantly higher B5-specific and thus EEV-neutralizing antibody responses. These data provide a benchmark against which new, safer smallpox vaccines and residual immunity can be compared.  相似文献   

19.
20.
Vaccinia virus intracellular mature virus (IMV) binds to glycosaminoglycans (GAGs) on cells via three virion proteins, H3L, A27L, and D8L. In this study, we demonstrated that binding of IMV to BSC40 cells was competitively inhibited by soluble laminin but not by fibronectin or collagen V, suggesting that this cell surface extracellular matrix (ECM) protein may play a role in vaccinia virus entry. Moreover, IMV infection of GAG(-) sog9 cells was also inhibited by laminin, demonstrating that virion binding to laminin does not involve a prior interaction with GAGs. Furthermore, comparative envelope protein analyses of wild-type vaccinia virus strain Western Reserve, which binds to laminin, and of a mutant virus, IA27L, which does not, showed that the A26L open reading frame (ORF), encoding an envelope protein, was mutated in IA27L, resulting in A26L being absent from the IMV. Expression of the wild-type A26L ORF in IA27L resulted in laminin binding activity. Moreover, recombinant A26L protein bound to laminin in vitro with a high affinity, providing direct evidence that A26L is the laminin binding protein on IMV. In summary, these results reveal a novel role for the vaccinia viral envelope protein A26L in binding to the ECM protein laminin, an association that is proposed to facilitate IMV entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号