首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vaccinia virus 14-kDa protein (encoded by the A27L gene) plays an important role in the biology of the virus, acting in virus-to-cell and cell-to-cell fusions. The protein is located on the surface of the intracellular mature virus form and is essential for both the release of extracellular enveloped virus from the cells and virus spread. Sequence analysis predicts the existence of four regions in this protein: a structureless region from amino acids 1 to 28, a helical region from residues 29 to 37, a triple coiled-coil helical region from residues 44 to 72, and a Leu zipper motif at the C terminus. Circular dichroism spectroscopy, analytical ultracentrifugation, and chemical cross-linking studies of the purified wild-type protein and several mutant forms, lacking one or more of the above regions or with point mutations, support the above-described structural division of the 14-kDa protein. The two contiguous cysteine residues at positions 71 and 72 are not responsible for the formation of 14-kDa protein trimers. The location of hydrophobic residues at the a and d positions on a helical wheel and of charged amino acids in adjacent positions, e and g, suggests that the hydrophobic and ionic interactions in the triple coiled-coil helical region are involved in oligomer formation. This conjecture was supported by the construction of a three-helix bundle model and molecular dynamics. Binding assays with purified proteins expressed in Escherichia coli and cytoplasmic extracts from cells infected with a virus that does not produce the 14-kDa protein during infection (VVindA27L) show that the 21-kDa protein (encoded by the A17L gene) is the specific viral binding partner and identify the putative Leu zipper, the predicted third α-helix on the C terminus of the 14-kDa protein, as the region involved in protein binding. These findings were confirmed in vivo, following transfection of animal cells with plasmid vectors expressing mutant forms of the 14-kDa protein and infected with VVindA27L. We find the structural organization of 14kDa to be similar to that of other fusion proteins, such as hemagglutinin of influenza virus and gp41 of human immunodeficiency virus, except for the presence of a protein-anchoring domain instead of a transmembrane domain. Based on our observations, we have established a structural model of the 14-kDa protein.  相似文献   

2.
Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.  相似文献   

3.
4.
5.
6.
The outer envelope of the extracellular form of vaccinia virus is derived from Golgi membranes that have been modified by the insertion of specific viral proteins, of which the major component is the 37-kDa, palmitylated, nonglycosylated product of the F13L gene. The F13L protein contains a variant of the HKD (His-Lys-Asp) motif, which is conserved in numerous enzymes of phospholipid metabolism. Vaccinia virus mutants with a conservative substitution of either the K (K314R) or the D (D319E) residue of the F13L protein formed only tiny plaques similar to those produced by an F13L deletion mutant, were unable to produce extracellular enveloped virions, and failed to mediate low-pH-induced fusion of infected cells. Membrane-wrapped forms of intracellular virus were rarely detected in electron microscopic images of cells infected with either of the mutants. Western blotting and pulse-chase experiments demonstrated that the D319E protein was less stable than either the K314R or wild-type F13L protein. Most striking, however, was the failure of either of the two mutated proteins to concentrate in the Golgi compartment. Palmitylation, oleation, and partitioning of the F13L protein in Triton X-114 detergent were unaffected by the K314R substitution. These results indicated that the F13L protein must retain the K314 and D319 for it to localize in the Golgi compartment and function in membrane envelopment of vaccinia virus.  相似文献   

7.
The wrapping of intracellular mature vaccinia virions by modified trans-Golgi or endosomal cisternae to form intracellular enveloped virions is dependent on at least two viral proteins encoded by the B5R and F13L open reading frames. B5R is a type I integral membrane glycoprotein, whereas F13L is an unglycosylated, palmitylated protein with a motif that is conserved in a superfamily of phospholipid-metabolizing enzymes. Microscopic visualization of the F13L protein was achieved by fusing it to the enhanced green fluorescent protein (GFP). F13L-GFP was functional when expressed by a recombinant vaccinia virus in which it replaced the wild-type F13L gene or by transfection of uninfected cells with a plasmid vector followed by infection with an F13L deletion mutant. In uninfected or infected cells, F13L-GFP was associated with Golgi cisternae and post-Golgi vesicles containing the LAMP 2 late endosomal-lysosomal marker. Association of F13L-GFP with vesicles was dependent on an intact phospholipase catalytic motif and sites of palmitylation. The B5R protein was also associated with LAMP2-containing vesicles when F13L-GFP was coexpressed, but was largely restricted to Golgi cisternae in the absence of F13L-GFP or when the F13L moiety was mutated. We suggest that the F13L protein, like its human phospholipase D homolog, regulates vesicle formation and that this process is involved in intracellular enveloped virion membrane formation.  相似文献   

8.
We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.  相似文献   

9.
10.
Envelope protein E of the flavivirus tick-borne encephalitis virus mediates membrane fusion, and the structure of the N-terminal 80% of this 496-amino-acid-long protein has been shown to differ significantly from that of other viral fusion proteins. The structure of the carboxy-terminal 20%, the stem-anchor region, is not known. It contains sequences that are important for membrane anchoring, interactions with prM (the precursor of membrane protein M) during virion assembly, and low-pH-induced structural changes associated with the fusion process. To identify specific functional elements in this region, a series of C-terminal deletion mutants were constructed and the properties of the resulting truncated recombinant E proteins were examined. Full-length E proteins and proteins lacking the second of two predicted transmembrane segments were secreted in a particulate form when coexpressed with prM, whereas deletion of both segments resulted in the secretion of soluble homodimeric E proteins. Sites located within a predicted alpha-helical region of the stem (amino acids 431 to 449) and the first membrane-spanning region (amino acids 450 to 472) were found to be important for the stability of the prM-E heterodimer but not essential for prM-mediated intracellular transport and secretion of soluble E proteins. A separate site in the stem, also corresponding to a predicted alpha-helix (amino acids 401 to 413), was essential for the conversion of soluble protein E dimers to a homotrimeric form upon low-pH treatment, a process resembling the transition to the fusogenic state in whole virions. This functional mapping will aid in the understanding of the molecular mechanisms of membrane fusion and virus assembly.  相似文献   

11.
Mechanism of Poly (A) Synthesis by Vaccinia Virus   总被引:6,自引:6,他引:0       下载免费PDF全文
  相似文献   

12.
Functional Domains in the Retroviral Transmembrane Protein   总被引:1,自引:6,他引:1       下载免费PDF全文
The envelope glycoproteins of the mammalian type C retroviruses consist of two subunits, a surface (SU) protein and a transmembrane (TM) protein. SU binds to the viral receptor and is thought to trigger conformational changes in the associated TM protein that ultimately lead to the fusion of viral and host cell membranes. For Moloney murine leukemia virus (MoMuLV), the envelope protein probably exists as a trimer. We have previously demonstrated that the coexpression of envelope proteins that are individually defective in either the SU or TM subunits can lead to functional complementation (Y. Zhao et al., J. Virol. 71:6967–6972, 1997). We have now extended these studies to investigate the abilities of a panel of fusion-defective TM mutants to complement each other. This analysis identified distinct complementation groups within TM, with implications for interactions between different regions of TM in the fusion process. In viral particles, the C-terminal 16 amino acids of the MoMuLV TM (the R peptide) are cleaved by the viral protease, resulting in an increased fusogenicity of the envelope protein. We have examined the consequences of R peptide cleavage for the different TM fusion mutants and have found that this enhancement of fusogenicity can only occur in cis to certain of the TM mutants. These results suggest that R peptide cleavage enhances the fusogenicity of the envelope protein by influencing the interaction of two distinct regions in the TM ectodomain.  相似文献   

13.
A characterization of the A45R gene from vaccinia virus (VV) strain Western Reserve is presented. The open reading frame is predicted to encode a 125-amino-acid protein (M(r), of 13,600) with 39% amino acid identity to copper-zinc superoxide dismutase (Cu-Zn SOD). Sequencing of the A45R gene from other orthopoxviruses, here and by others, showed that the protein is highly conserved in all viruses sequenced, including 16 strains of VV, 2 strains of cowpox virus, camelpox virus, and 4 strains of variola virus. In all cases the protein lacks key residues involved in metal ion binding that are important for the catalytic activity. The A45R protein was expressed in Escherichia coli, purified, and tested for SOD activity, but neither enzymatic nor inhibitory SOD activity was detected. Additionally, no virus-encoded SOD activity was detected in infected cells or purified virions. A monoclonal antibody raised against the A45R protein expressed in E. coli identified the A45R gene product as a 13.5-kDa protein that is expressed late during VV infection. Confocal microscopy of VV-infected cells indicated that the A45R protein accumulated predominantly in cytoplasmic viral factories. Electron microscopy and biochemical analyses showed that the A45R protein is incorporated into the virion core. A deletion mutant lacking the majority of the A45R gene and a revertant virus in which the deleted gene was restored were constructed and characterized. The growth properties of the deletion mutant virus were indistinguishable from those of wild-type and revertant viruses in all cell lines tested, including macrophages. Additionally, the virulence and pathogenicity of the three viruses were also comparable in murine and rabbit models of infection. A45R is unusual in being the first VV core protein described that affects neither virus replication nor virulence.  相似文献   

14.
15.
The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1+ have revealed that the long N-terminal region (1–456 a.a. [amino acids]) of Rap1 (full length: 693 a.a.) is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457–693 a.a.) containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus) and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.  相似文献   

16.
The vaccinia virus (VV) A33R gene encodes a highly conserved 23- to 28-kDa glycoprotein that is specifically incorporated into the viral outer envelope. The protein is expressed early and late after infection, consistent with putative early and late promoter sequences. To determine the role of the protein, two inducible A33R mutants were constructed, one with the late promoter and one with the early and late A33R promoter elements. Decreased A33R expression was associated with small plaques that formed comets in liquid medium. Using both an antibiotic resistance gene and a color marker, an A33R deletion mutant, vA33Δ, was isolated, indicating that the A33R gene is not essential for VV replication. The plaques formed by vA33Δ, however, were tiny, indicating that the A33R protein is necessary for efficient cell-to-cell spread. Rescue of the large-plaque phenotype was achieved by inserting a new copy of the A33R gene into the thymidine kinase locus, confirming the specific genetic basis of the phenotype. Although there was a reduction in intracellular virus formed in cells infected with vA33Δ, the amount of infectious virus in the medium was increased. The virus particles in the medium had the buoyant density of extracellular enveloped viruses (EEV). Additionally, amounts of vA33Δ cell-associated extracellular enveloped viruses (CEV) were found to be normal. Immunogold electron microscopy of cells infected with vA33Δ demonstrated the presence of the expected F13L and B5R proteins in wrapping membranes and EEV; however, fully wrapped vA33Δ intracellular enveloped viruses (IEV) were rare compared to partially wrapped particles. Specialized actin tails that propel IEV particles to the periphery and virus-tipped microvilli (both common in wild-type-infected cells) were absent in cells infected with vA33Δ. This is the first deletion mutant in a VV envelope gene that produces at least normal amounts of fully infectious EEV and CEV and yet has a small-plaque phenotype. These data support a new model for VV spread, emphasizing the importance of virus-tipped actin tails.  相似文献   

17.
To improve the safety of recombinant vaccinia virus vaccines, modified vaccinia virus Ankara (MVA) has been employed, because it has a replication defect in most mammalian cells. Here we apply MVA to human immunodeficiency virus type 1 (HIV-1) vaccine development by incorporating the envelope protein gp160 of HIV-1 primary isolate strain 89.6 (MVA 89.6) and use it to induce mucosal cytotoxic-T-lymphocyte (CTL) immunity. In initial studies to define a dominant CTL epitope for HIV-1 89.6 gp160, we mapped the epitope to a sequence, IGPGRAFYAR (from the V3 loop), homologous to that recognized by HIV MN loop-specific CTL and showed that HIV-1 MN-specific CTLs cross-reactively recognize the corresponding epitope from strain 89.6 presented by H-2Dd. Having defined the CTL specificity, we immunized BALB/c mice intrarectally with recombinant MVA 89.6. A single mucosal immunization with MVA 89.6 was able to elicit long-lasting antigen-specific mucosal (Peyer’s patch and lamina propria) and systemic (spleen) CTL responses as effective as or more effective than those of a replication-competent vaccinia virus expressing 89.6 gp160. Immunization with MVA 89.6 led to (i) the loading of antigen-presenting cells in vivo, as measured by the ex vivo active presentation of the P18-89.6 peptide to an antigen-specific CTL line, and (ii) the significant production of the proinflammatory cytokines (interleukin-6 and tumor necrosis factor alpha) in the mucosal sites. These results indicate that nonreplicating recombinant MVA may be at least as effective for mucosal immunization as replicating recombinant vaccinia virus.  相似文献   

18.
目前,传统的灭活猪瘟疫苗及弱毒(减毒)猪瘟疫苗存在免疫保护期短、毒力返强等缺点,而蛋白源性亚单位疫苗可以很好的解决上述问题。铁蛋白24个亚基可以自组装成稳定的多聚体纳米颗粒,成为理想的抗原呈递载体和疫苗开发平台。基于此,将铁蛋白与具有较强免疫原性的猪瘟病毒囊膜蛋白E2(具有高保守性的保护性抗原)结合,构建融合基因E2-Fe,将该基因克隆到pET28a原核表达载体中,转化至大肠杆菌(Escherichia coli)BL21(DE3)感受态细胞中进行诱导条件的探索及其高效表达,再将表达的融合蛋白进行镍柱纯化、质谱分析、Western-blotting验证及电镜检测。结果显示,融合基因E2-Fe已成功克隆到pET-28a载体上,0.50%乳糖诱导6 h为融合蛋白E2-Fe表达的最优条件;质谱分析与Western-blotting均显示融合蛋白的大小约为51 kD,与理论值相符;电镜观察到的纳米颗粒直径约为20 nm。结果表明,融合铁蛋白的猪瘟病毒囊膜蛋白E2在大肠杆菌中得到高效表达,经镍柱纯化后可获得数量可观的自组装纳米颗粒抗原,为研究新的猪瘟疫苗拓宽了研究思路。  相似文献   

19.
P-glycoprotein (P-gp), the product of human MDR1 gene, which functions as an ATP-dependent drug efflux pump, is N-linked glycosylated at asparagine residues 91, 94, and 99 located within the first extracellular loop. We report here the biochemical characterization of glycosylation-deficient (Gly) P-gp using a vaccinia virus based transient expression system. The staining of HeLa cells expressing Gly P-gp (91, 94, and 99N→Q), with P-gp specific monoclonal antibodies, MRK-16, UIC2 and 4E3 revealed a 40 to 50% lower cell-surface expression of mutant P-gp compared to the wild-type protein. The transport function of Gly P-gp, assessed using a variety of fluorescent compounds indicated that the substrate specificity of the pump was not affected by the lack of glycosylation. Additional mutants, Gly D (91, 94, 99N→D) and GlyΔ (91, 94, 99 N deleted) were generated to verify that the reduced cell surface expression, as well as total expression, were not a result of the glutamine substitutions. Gly D and GlyΔ Pgps were also expressed to the same level as the Gly mutant protein. 35S-Methionine/cysteine pulse-chase studies revealed a reduced incorporation of 35S-methionine/cysteine in full length Gly P-gp compared to wild-type protein, but the half-life (∼3 hr) of mutant P-gp was essentially unaltered. Since treatment with proteasome inhibitors (MG-132, lactacystin) increased only the intracellular level of nascent, mutant P-gp, the decreased incorporation of 35S-methionine/cysteine in Gly P-gp appears to be due to degradation of improperly folded mutant protein by the proteasome and endoplasmic reticulum-associated proteases. These results demonstrate that the unglycosylated protein, although expressed at lower levels at the cell surface, is functional and suitable for structural studies. Received: 28 July 1999/Revised: 20 October 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号