首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The suppressor of cytokine signaling (SOCS) group of proteins has been implicated in regulation of various cytokine signaling and in a negative crosstalk between distinct signaling pathways. Interleukin-10 (IL-10) and LPS were known to induce expression of SOCS-3 in neutrophils and monocytes/macrophages. IL-10 was also reported to inhibit a proinflammatory signal-induced NF-kappaB activation in monocytes and peripheral T lymphocytes. The effects of increased SOCS-3 expression upon IL-10 regulation of NF-kappaB activation have not yet been demonstrated. Here we examined the effects of SOCS-3 on NF-kappaB activity. SOCS-3 did not induce any alterations in NF-kappaB activity induced by LPS or TNF-alpha. However, it enhanced RelA-dependent kappaB promoter activity when cotransfected with RelA. Similar results were observed with SOCS-1. In contrast, SOCS-2 did not show any regulatory effects on RelA activity. Analysis of C-terminal truncation mutants of SOCS-1 and SOCS-3 demonstrated that the SOCS box and its N-terminal region, a less well-conserved linker region were important for SOCS-3 activation of RelA. In contrast, the SOCS box itself was critical for SOCS-1 to activate RelA. These results suggest that SOCS proteins can enhance the effects of NF-kappaB/Rel proteins, and therefore, further modulate immune and inflammatory responses.  相似文献   

4.
Natural killer (NK) cells are important components of innate immune defense. NK cells kill virus-infected cells and secrete cytokines that are involved in activation of other immune cells. Macrophage-derived cytokines interferon-alpha (IFN-alpha) and interleukin-15 (IL-15) are in turn important activators of NK cells, but the receptors and intracellular pathways that are involved in NK cell functions are still incompletely known. Here we have used expression proteomics to find new IFN-alpha and IL-15 regulated proteins in human NK-92 cells, which have the characteristics of activated NK cells. Cells were stimulated with cytokines for 20 h, lysed, and soluble proteins were separated by two-dimensional electrophoresis, and differentially expressed protein spots were identified with mass spectrometry and database searches. A total of 57 protein spots were found to be reproducibly differentially expressed between control and cytokine stimulated gel pairs, 26 spots being more than 2-fold upregulated and 3 spots being at least 2-fold downregulated. The rest 28 spots showed minor, less than 2-fold changes in their expression levels after quantification. From the differentially expressed protein spots we identified 47 different proteins, most of which are new IFN-alpha and IL-15 target proteins. Interestingly, we show that e.g., adenylate kinase 2 is highly upregulated by IFN-alpha and IL-15 stimulation in NK-92 cells. The expression of selected genes with high expression level differences after cytokine stimulation were further studied at mRNA level. Northern blot analysis showed that the genes studied were induced by IFN-alpha, IL-15, and IL-2 already at 3 h time point, suggesting that they are primary target genes of these cytokines.  相似文献   

5.
6.
7.
It is widely believed that the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1, and IL-6 are the main proinflammatory mediators induced in the host by bacteria and their cell wall components. To test this hypothesis, we compared the level of expression of 600 genes activated in human monocytes by Staphylococcus aureus, peptidoglycan, endotoxin, and interferon-gamma. These stimulants induced expression of over 120 genes, as identified by cDNA arrays. The highest activated genes for proinflammatory mediators induced by all three bacterial stimulants were chemokine genes (IL-8 and macrophage inflammatory protein (MIP)-1alpha), whereas cytokine genes (TNF-alpha, IL-1, and IL-6) were induced to a lower extent. Genes for other chemokines (MIP-2alpha, MIP-1beta, and monocyte chemoattractant protein-1) were also induced higher than the cytokine genes by peptidoglycan, and as high or higher than the cytokine genes by S. aureus and endotoxin. This high induction of chemokine genes was confirmed by quantitative RNase protection assay, and high secretion of chemokines was confirmed by enzyme-linked immunosorbent assays. Although genes for chemokines were the highest and genes for cytokines were the second highest induced genes by all three bacterial stimulants, each stimulus induced a unique pattern of gene expression. By contrast, expression of a completely different gene pattern was induced by a nonbacterial stimulus, interferon-gamma. These results establish chemokines as the main mediators induced by both Gram-positive and Gram-negative bacteria and are consistent with the highly inflammatory nature of bacterial infections.  相似文献   

8.

Introduction

Increasing evidence now supports the association between the fetal inflammatory response syndrome (FIRS) with the pathogenesis of preterm labor, intraventricular hemorrhage and bronchopulmonary dysplasia. Polymorphonuclear leukocyte (PMNs) and mononuclear cell (MONOs) infiltration of the placenta is associated with these disorders. The aim of this study was to reveal cell-specific differences in gene expression and cytokine release in response to endotoxin that would elucidate inflammatory control mechanisms in the newly born.

Methods

PMNs and MONOs were separately isolated from the same cord blood sample. A genome-wide microarray screened for gene expression and related pathways at 4 h of LPS stimulation (n = 5). RT-qPCR and ELISA were performed for selected cytokines at 4 h and 18 h of LPS stimulation.

Results

Compared to PMNs, MONOs had a greater diversity and more robust gene expression that included pro-inflammatory (PI) cytokines, chemokines and growth factors at 4 h. Only MONOs had genes changing expression (all up regulated including interleukin-10) that were clustered in the JAK/STAT pathway. Pre-incubation with IL-10 antibody, for LPS-stimulated MONOs, led to up regulated PI and IL-10 gene expression and release of PI cytokines after 4 h.

Discussion

The present study suggests a dominant role of MONO gene expression in control of the fetal inflammatory response syndrome at 4 hrs of LPS stimulation. LPS-stimulated MONOs but not PMNs of the newborn have the ability to inhibit PI cytokine gene expression by latent IL-10 release.  相似文献   

9.
10.
The liver is the major source of proteins used throughout the body for various functions. Upon injury or infection, an acute phase response (APR) is initiated in the liver that is primarily mediated by inflammatory cytokines such as interleukin-1beta (IL-1beta) and interleukin-6. Among others, the APR is characterized by an altered protein synthetic profile. We used two-dimensional gel electrophoresis to study the dynamics of changes in protein synthesis in hepatocytes exposed to these inflammatory cytokines. Protein profiles were quantified using image analysis and further analyzed using multivariate statistical methods. Our results indicate that IL-1beta and IL-6 each induces secreted protein responses with distinct dynamics and dose-dependence. Parallel stimulation by IL-1beta and IL-6 results in a protein pattern indistinguishable from the IL-1beta pattern, indicating a dominant effect of IL-1beta over IL-6 at the doses tested. Multidimensional scaling (MDS) of correlation distances between protein secretion levels revealed two protein pairs that are robustly co-secreted across the various cytokine stimulation conditions, suggesting shared regulatory pathways. Finally, we also used multivariate alternating conditional expectation (MACE) to identify transformation functions that discriminated the cytokine-stimulated and untreated hepatocyte-secreted protein profiles. Our analysis indicates that the expression of neutrophil gelatinase-associated lipocalin (NGAL) was sufficient to discriminate between IL-1beta and IL-6 stimulation. The combination of proteomics and multivariate analysis is expected to provide new information on the cellular regulatory networks involved in generating specific cellular responses.  相似文献   

11.
Organs from neonatal mice dying from IFN-gamma-dependent inflammatory disease initiated by loss of the gene encoding the suppressor of cytokine signaling-1 (SOCS-1) had a normal capacity to produce G-CSF in vitro but a reduced capacity to produce GM-CSF, most evident with the lung, and some reduction in the production of M-CSF by muscle tissue. In contrast, organs from mice lacking the genes for both SOCS-1 and IFN-gamma had a normal capacity to produce CSFs. Organs from young adult mice dying with polymyositis and myocarditis that lacked SOCS-1 but were heterozygous for IFN-gamma had a normal capacity to produce GM-CSF and M-CSF, but muscle tissue produced significantly increased amounts of G-CSF and IL-5 with IL-5 production also being elevated for the salivary gland, thymus, and heart. Loss of the IFN-gamma gene alone had no impact on organ production of these cytokines in vitro. In none of the inflammatory disease models was IL-3 production detected. The SOCS-1 protein appears to have no direct influence on the cellular production of these cytokines and the abnormalities observed either depend on the coaction of IFN-gamma, or more likely, are linked with the invasion and destruction of tissue by T lymphocytes, macrophages, eosinophils, and neutrophils. The ability of local organs to produce these proinflammatory cytokines could contribute to the development and progression of these inflammatory lesions.  相似文献   

12.
Suppressor of cytokine signaling-1 (SOCS-1) is an essential regulator of cytokine signaling. SOCS-1-/- mice die before weaning with a complex disease characterized by fatty degeneration and necrosis of the liver. This disease is mediated by interferon (IFN) gamma as neonatal mortality fails to occur in SOCS-1-/-IFNgamma-/- mice. However, the immune system of healthy SOCS-1-/-IFNgamma-/- mice is dysregulated with a reduced ratio of CD4:CD8 T cells and increases in some aspects of T cell activation. SOCS-1-/-IFNgamma-/- mice also die before their wild type and IFNgamma-/- counterparts with a range of inflammatory conditions including pneumonia, gut infiltration, and skin ulceration, suggesting that SOCS-1 controls not only IFNgamma signaling, but also other immunoregulatory factors. This study shows that T cells from SOCS-1-deficient mice display hypersensitivity to cytokines that act through the gammac receptor. SOCS-1 expression is induced by interleukin (IL) 2, IL-4, IL-7, and IL-15, and SOCS-1-deficient T cells show increased proliferation and prolonged survival in response to IL-2 and IL-4. Furthermore, IL-2 induced increased STAT5 phosphorylation and CD44 expression in SOCS-1-deficient T cells compared with controls. Hypersensitivity to gammac-dependent cytokines may contribute to abnormal T cell function, as well as the pathology observed in mice lacking SOCS-1.  相似文献   

13.
14.
Fibronectin fragments (FN-f) that bind to the alpha(5)beta(1) integrin stimulate chondrocyte-mediated cartilage destruction and could play an important role in the progression of arthritis. The objective of this study was to identify potential cytokine mediators of cartilage inflammation and destruction induced by FN-f and to investigate the mechanism of their stimulation. Human articular chondrocytes, isolated from normal ankle cartilage obtained from tissue donors, were treated with a 110-kDa FN-f in serum-free culture, and expression of various cytokine genes was analyzed by cDNA microarray and by a cytokine protein array. Compared with untreated control cultures, stimulation by FN-f resulted in a >2-fold increase in IL-6, IL-8, MCP-1, and growth-related oncogene beta (GRO-beta). Constitutive and FN-f-inducible expression of GRO-alpha and GRO-gamma were also noted by RT-PCR and confirmed by immunoblotting. Previous reports of IL-1beta expression induced by FN-f were also confirmed, while TNF expression was found to be very low. Inhibitor studies revealed that FN-f-induced stimulation of chondrocyte chemokine expression was dependent on NF-kappaB activity, but independent of IL-1 autocrine signaling. The ability of FN-f to stimulate chondrocyte expression of multiple proinflammatory cytokines and chemokines suggests that damage to the cartilage matrix is capable of inducing a proinflammatory state responsible for further progressive matrix destruction, which also includes the chemoattraction of inflammatory cells. Targeting the signaling pathways activated by FN-f may be an effective means of inhibiting production of multiple mediators of cartilage destruction.  相似文献   

15.
In the inflammatory gingival tissues of patients with periodontitis, cytokines such as interleukin (IL)-1 alpha, IL-1 beta, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha have been detected. Gingival fibroblasts are the major constituents of gingival tissue. We recently demonstrated that lipopolysaccharide (LPS) from periodontopathic bacteria induces inflammatory reactions in various tissues via CD14 and/or Toll-like receptors (TLRs) in gingival tissues [Biochem. Biophys. Res. Commun. 273 (2000) 1161]. To confirm this, we examined the expression of IL-1 alpha, IL-1 beta, IL-6, IL-8, TNF-alpha, CD14, TLR2, and TLR4 in human gingival fibroblasts (HGFs) obtained from patients with healthy or inflammatory gingiva using DNA microarray analysis. We also studied the expression levels of these proteins by flow cytometric analysis (FACS). The expression levels of all eight genes in the HGFs of the Inflammatory group were significantly higher than those in the Healthy group on DNA microarray analysis. FACS revealed that the expression levels of all eight proteins on the HGFs of the Inflammatory group were higher than those on the Healthy group. Our data indicated that these eight proteins in HGFs are involved in inflammatory conditions in the gingiva, including periodontal disease. Our results suggested that these eight proteins, in turn, act directly or indirectly on the immune response by activating host cells involved in inflammatory processes.  相似文献   

16.
We have previously demonstrated that administration of the recently described cytokine IL-17 in rat airways in vivo recruits and activates neutrophils locally. In the current study, we examined whether endogenous IL-17 is involved in mediating neutrophil recruitment caused by endotoxin exposure in mouse airways. Our in vivo data show that local endotoxin exposure causes the release of free, soluble IL-17 protein 6 h later. Systemic pretreatment with a neutralizing anti-IL-17 Ab almost completely inhibits neutrophil recruitment 24 h, but not 6 h, after endotoxin exposure in the airways. Pretreatment with neutralizing anti-IL-6 and anti-macrophage inflammatory protein (MIP)-2 Abs inhibits neutrophil recruitment caused by local endotoxin exposure and IL-17, respectively. Our in vitro data show that endotoxin exposure stimulates the release of soluble IL-17 protein in T lymphocytes harvested from lung and spleen, respectively, and that this cytokine release requires coculture with airway macrophages. Intracellular IL-17 protein is detected in T lymphocytes from spleen but not in airway macrophages after coculture and stimulation of these two cell types. Finally, anti-IL-17 does not alter endotoxin-induced release of IL-6 and MIP-2 from T lymphocytes and airway macrophages in coculture. In conclusion, our results indicate that endotoxin exposure causes the release of IL-17 from T lymphocytes and that this cytokine release requires the presence of macrophages. Once released, endogenous IL-17 acts in part by inducing local release of neutrophil-mobilizing cytokines such as IL-6 and MIP-2, from nonlymphocyte, nonmacrophage cells, and this contributes to recruitment of neutrophils in the airways. These IL-17-related mechanisms constitute potential targets for pharmacotherapy against exaggerated neutrophil recruitment in airway disease.  相似文献   

17.
18.
IL-6 induces NF-kappa B activation in the intestinal epithelia   总被引:8,自引:0,他引:8  
IL-6 is a potent proinflammatory cytokine that has been shown to play an important role in the pathogenesis of inflammatory bowel disease (IBD). It is classically known to activate gene expression via the STAT-3 pathway. Given the crucial role of IL-6 in the pathogenesis of chronic intestinal inflammation, it is not known whether IL-6 activates NF-kappaB, a central mediator of intestinal inflammation. The model intestinal epithelial cell line, Caco2-BBE, was used to study IL-6 signaling and to analyze whether suppressor of cytokine signaling 3 (SOCS-3) proteins play a role in the negative regulation of IL-6 signaling. We show that IL-6 receptors are present in intestinal epithelia in a polarized fashion. Basolateral IL-6 and, to a lesser extent, apical IL-6 induces the activation of the NF-kappaB pathway. Basolateral IL-6 stimulation results in a maximal induction of NF-kappaB activation and NF-kappaB nuclear translocation at 2 h. IL-6 induces polarized expression of ICAM-1, an adhesion molecule shown to be important in the neutrophil-epithelial interactions in IBD. Using various deletion constructs of ICAM-1 promoter, we show that ICAM-1 induction by IL-6 requires the activation of NF-kappaB. We also demonstrate that overexpression of SOCS-3, a protein known to inhibit STAT activation in response to IL-6, down-regulates IL-6-induced NF-kappaB activation and ICAM-1 expression. In summary, we demonstrate the activation of NF-kappaB by IL-6 in intestinal epithelia and the down-regulation of NF-kappaB induction by SOCS-3. These data may have mechanistic and therapeutic implications in diseases such as IBD and rheumatoid arthritis in which IL-6 plays an important role in the pathogenesis.  相似文献   

19.
Members of the recently discovered SOCS/CIS/SSI family have been proposed as regulators of cytokine signaling, and while targets and mechanisms have been suggested for some family members, the precise role of these proteins remains to be defined. To date no SOCS proteins have been specifically implicated in interleukin-2 (IL-2) signaling in T cells. Here we report SOCS-3 expression in response to IL-2 in both T-cell lines and human peripheral blood lymphocytes. SOCS-3 protein was detectable as early as 30 min following IL-2 stimulation, while CIS was seen only at low levels after 2 h. Unlike CIS, SOCS-3 was rapidly tyrosine phosphorylated in response to IL-2. Tyrosine phosphorylation of SOCS-3 was observed upon coexpression with Jak1 and Jak2 but only weakly with Jak3. In these experiments, SOCS-3 associated with Jak1 and inhibited Jak1 phosphorylation, and this inhibition was markedly enhanced by the presence of IL-2 receptor beta chain (IL-2Rbeta). Moreover, following IL-2 stimulation of T cells, SOCS-3 was able to interact with the IL-2 receptor complex, and in particular tyrosine phosphorylated Jak1 and IL-2Rbeta. Additionally, in lymphocytes expressing SOCS-3 but not CIS, IL-2-induced tyrosine phosphorylation of STAT5b was markedly reduced, while there was only a weak effect on IL-3-mediated STAT5b tyrosine phosphorylation. Finally, proliferation induced by both IL-2- and IL-3 was significantly inhibited in the presence of SOCS-3. The findings suggest that when SOCS-3 is rapidly induced by IL-2 in T cells, it acts to inhibit IL-2 responses in a classical negative feedback loop.  相似文献   

20.
Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-α and IL-6 through the delayed activation of the NF-κB pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-α secretion and restored NF-κB signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号