首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigations into physiological aspects of glycerol conversion to dihydroxyacetone (DHA) by Gluconobacter oxydans ATCC 621 were made. The activity levels of the enzymes involved in the three catabolic pathways previously known and the effects of specific inhibitors and uncoupling agents on cellular development, DHA synthesis, and cellular respiratory activity were determined. It was established that only two catabolic pathways are involved in glycerol dissimilation by this micro-organism. The only enzyme responsible for DHA production is membrane-bound glycerol dehydrogenase, which employs oxygen as the final acceptor of reduced equivalents without NADH mediation. The ketone is directly released into the culture broth. As the glycolytic and carboxylic acid pathways are absent, the pathway provided by the membrane-bound enzyme is indispensable for the energy requirements of G. oxydans. The cytoplasmic pathway, which begins by phosphorylation of glycerol followed by a dehydrogenation to dihydroxyacetone phosphate, allows growth of the bacterium. At the same time, the substrate transport mode was characterized as facilitated diffusion using radioactive [1(3)-3H]-glycerol. Concerning the DHA inhibition of microbial activity, the enzymatic study of the membrane-bound glycerol dehydrogenase showed the enzymatic origin of this phenomenon: a 50% decrease of the enzyme activity was observed in the presence of 576 mm DHA. The decrease in the rate of penetration of glycerol into cells in the presence of DHA indicates that growth inhibition is essentially due to the high inhibition exerted by the ketone on the substrate transport system.  相似文献   

2.
Spiramycin production by Streptomyces ambofaciens in a chemically defined medium, with valine as nitrogen source, was controlled by the nature and the concentration of the carbon source. The production of this antibiotic was better in dextrins than in glycerol-containing medium. The negative effect of glycerol could be attributed in part to an excess of energy and a high specific growth rate. The intracellular ATP content, at the start of spiramycin production, was twofold higher in glycerol than in dextrin-containing medium. Increasing the initial concentrations of glycerol led to an increase in the specific growth rate and a drop in spiramycin production. Comparison between glycerol and a protein synthesis inhibitor effects and the use of resting cell systems (RCS) proved that glycerol exerted both inhibitory and repressive actions on spiramycin production independently from the growth. At the enzymatic level, glycerol interfered with valine catabolism by repressing partially valine dehydrogenase (VDH) and -ketoisoisovalerate dehydrogenase (KIVDH), generator of spiramycin aglycone precursors.  相似文献   

3.
A rapid purification procedure for glycerol-3-phosphate dehydrogenase from Dunaliella tertiolecta (strain 19-6 of the algal collection of the Univ. of Göttingen), the initial enzyme in the glycerol cycle, has been developed on the basis of affinity chromatography on Blue Sepharose and subsequent desalting by Sephadex G-50. The achieved purification was 126-fold. The pH optimum of dihydroxyacetone phosphate reduction is 7, that of glycerol-3-phosphate oxidation is about 9. The in vitro enzymatic activity obtained from cell extracts is higher than the required activity for the observed glycerol production rates under osmotic stress in vivo.  相似文献   

4.
Mutants of Schizosaccharomyces pombe unable to grow or growing very slowly on glycerol have been isolated. Some, which could grow on dihydroxyacetone, lacked, or in one mutant possessed reduced amounts of, glycerol dehydrogenase (glycerol:NAD+ 2-oxidoreductase); others could not grow on dihydroxyacetone and lacked dihydroxyacetone kinase. Spontaneous revertants able to grow on glycerol had regained these enzymes. These results provide evidence that glycerol catabolism in S. pombe proceeds via initial dehydrogenation of glycerol followed by phosphorylation of dihydroxyacetone. There is evidence that dihydroxyacetone can be converted to a toxic product.  相似文献   

5.
Gluconobacter oxydans could be immobilized as a biocatalyst for the conversion of glycerol to dihydroxyacetone. To reduce the production cost, the cells were produced from agricultural byproducts. Corn meal hydrolysate and corn steep liquor were employed to replace of sorbitol and yeast extract as medium for G. oxydans cell production. The optimal medium contained 80 g/L reducing sugar, 25 g/L corn steep liquor, and 10 g/L glycerol. The cell mass was about 4.22 g/L and the glycerol dehydrogenase activity was about 5.23 U/mL. For comparison, the cell mass was about 4.0 g/L and the glycerol dehydrogenase activity was about 5.35 U/mL cultured in sorbitol and yeast extract medium. These studies shown the corn meal hydrolysate and corn steep liquor medium was similar in performance to a nutrient-rich medium, but the cost of production was only 15% of that cultured in sorbitol and yeast extract medium. It was an economical process for the production of G. oxydans cells as biocatalyst for the conversion of glycerol to dihydroxyacetone in industry.  相似文献   

6.
Summary Microbial conversion of glycerol into dihydroxyacetone (DHA) byGluconobacter oxydans was subjected to inhibition by excess substrate. Comparison of cultures containing increasing initial DHA contents (0 to 100 g l–1) demonstrated that DHA also inhibited this fermentation process. The first effect was on bacterial growth (cellular development stopped when DHA concentration reached 67 gl–1), and then on oxidation of glycerol (DHA synthesis only occurred when the DHA concentration in the culture medium was lower than 85 g l–1). Productivity, specific rates and, to a lesser extent, conversion yields decreased as initial concentrations of DHA increased. The changes in the specific parameters according to increasing initial DHA contents were described by general equations. These formulae satisfactorily express the concave aspect of the curves and the reduction in biological activity when the cells were in contact with DHA concentrations of up to 96 g l–1.Abbreviations X, S, P biomass, substrate, product concentrations - r x,r s,r p rates of growth, consumption and production - ,q s,q p specific rates of growth, glycerol consumption and DHA production - Y x/s, Yp/s conversion yields of substrate into biomass and product - K s constant of affinity of cells to the substrate - K ip product inhibition constant - P m threshold concentration of DHA in substrate  相似文献   

7.
Availability, low price, and high degree of reduction have made glycerol a highly attractive and exploited carbon source for the production of fuels and reduced chemicals. Here we report the quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli through the use of kinetic modeling and metabolic control analysis (MCA) to gain a better understanding of glycerol fermentation and identify key targets for genetic manipulation that could enhance product synthesis. The kinetics of glycerol fermentation in a batch culture was simulated using a dynamic model consisting of mass balances for glycerol, ethanol, biomass, and 11 intracellular metabolites, along with the corresponding kinetic expressions for the metabolism of each species. The model was then used to calculate metabolic control coefficients and elucidate the control structure of the pathways involved in glycerol utilization and ethanol synthesis. The calculated flux control coefficients indicate that the glycolytic flux during glycerol fermentation is almost exclusively controlled by the enzymes glycerol dehydrogenase (encoded by gldA) and dihydroxyacetone kinase (DHAK) (encoded by dhaKLM). In agreement with the MCA findings, overexpression of gldA and dhaKLM led to significant increase in glycerol utilization and ethanol synthesis fluxes. Moreover, overexpression of other enzymes involved in the pathways that mediate glycerol utilization and its conversion to ethanol had no significant impact on glycerol utilization and ethanol synthesis, further validating the MCA predictions. These findings were then applied as a means of increasing the production of ethanol: overexpression of glycerol dehyrdogenase and DHAK enabled the production of 20 g/L ethanol from crude glycerol, a by-product of biodiesel production, indicating the potential for industrial scale conversion of waste glycerol to ethanol under anaerobic conditions.  相似文献   

8.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

9.
In Escherichia coli K-12, the conversion of glycerol to triose phosphate is regulated by two types of control mechanism: the rate of synthesis of glycerol kinase and the feedback inhibition of its activity by fructose-1,6-diphosphate. A strain which has lost both control mechanisms by successive mutations, resulting in the constitutive synthesis of a glycerol kinase no longer sensitive to feedback inhibition, can produce a bactericidal factor from glycerol. This toxic factor has been identified by chemical and enzymological tests as methylglyoxal. Methylglyoxal can be derived from dihydroxyacetone phosphate through the action of an enzyme which is present at high constitutive levels in the extracts of the mutant as well as that of the wild-type strain. Nine spontaneous mutants resistant to 1 mm exogenous methylglyoxal have been isolated. In all cases the resistance is associated with increased levels of a glutathione-dependent enzymatic activity for the removal of methylglyoxal. Methylglyoxal-resistant mutants derived from the glycerol-sensitive parental strain also became immune to glycerol.  相似文献   

10.
Glycerol, the principal byproduct of biodiesel production, can be a valuable carbon source for bioconversion into diverse class of compounds. This article attempts to investigate the mechanistic aspects of ultrasound mediated bioconversion of glycerol to ethanol and 1,3‐propanediol (1,3‐PDO) by immobilized Clostridium pasteurianum cells on silica support. Our approach is of coupling experimental results with simulations of cavitation bubble dynamics and enzyme kinetics. In addition, the statistical analysis (ANOVA) of experimental results was also done. The glycerol uptake by cells was not affected by either immobilization or with ultrasonication. Nonetheless, both immobilization and ultrasonication were found to enhance glycerol consumption. The enhancement effect of ultrasound on glycerol consumption was most marked (175%) at the highest glycerol concentration of 25 g/L (271.7 mM). The highest glycerol consumption (32.4 mM) was seen for 10 g/L (108.7 mM) initial glycerol concentration. The immobilization of cells shifted the metabolic pathway almost completely towards 1,3‐PDO. No formation of ethanol was seen with mechanical shaking, while traces of ethanol were detected with ultrasonication. On the basis of analysis of enzyme kinetics parameters, we attribute these results to increased substrate‐enzyme affinity and decreased substrate inhibition for 1,3‐PDO dehydrogenase in presence of ultrasound that resulted in preferential conversion of glycerol into 1,3‐PDO. Biotechnol. Bioeng. 2013; 110: 1637–1645. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
During growth on glycerol two marine Desulfovibrio strains that can grow on an unusually broad range of substrates contained high activities of glycerol kinase, NAD(P)-independent glycerol 3-phosphate dehydrogenase and the other enzymes necessary for the conversion of dihydroxyacetone phosphate to pyruvate. Glycerol dehydrogenase and a specific dihydroxyacetone kinase were absent. During growth on dihydroxyacetone, glycerol kinase is involved in the initial conversion of this compound to dihydroxyacetone phosphate which is then further metabolized. Some kinetic properties of the partially purified glycerol kinase were determined. The role of NAD as electron carrier in the energy metabolism during growth of these strains on glycerol and dihydroxyacetone is discussed.Glycerol also supported growth of three out of four classical Desulfovibrio strains tested. D. vulgaris strain Hildenborough grew slowly on glycerol and contained glycerol kinase, glycerol 3-phosphate dehydrogenase and enzymes for the dissimilation of dihydroxyacetone phosphate. In D. gigas which did not grow on glycerol the enzymes glycerol kinase and glycerol 3-phosphate dehydrogenase were absent in lactate-grown cells.Abbreviations DHA dihydroxyacetone - DHAP dihydroxyacetone phosphate - G3P glycerol 3-phosphate - GAP glyceraldehyde 3-phosphate - 3-PGA 3-phosphoglycerate - 2-PGA 2-phosphoglycerate - 2,3-DPGA 2,3-diphosphoglycerate - PEP phosphoenolpyruvate - DH dehydrogenase - GK glycerol kinase - DHAK dihydroxyacetone kinase - TIM triosephosphate isomerase - PGK 3-phosphoglycerate kinase - PK pyruvate kinase - LDH lactate dehydrogenase - DTT dithiotreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid - PIPES piperazine-1,1-bis(2-ethane sulfonic acid) - BV2+/BV+ oxidized/reduced benzylviologen - PMS phenazine methosulfate - DCPIP 2,6-dichlorophenolindophenol - MTT 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide  相似文献   

12.
The evidence, kinetic aspects, and modelization of the inhibitory effect of glycerol on dihydroxyacetone (DHA) production byGluconobacter oxydans have been studied. The comparison of the maximal productivities and specific rates evaluated for initial concentrations of 31, 51, 76, 95, and 129 g L–1 of substrate showed that glycerol exerts an inhibitory effect both on growth and DHA production: decrease of the growth-specific rate and of the specific rate of DHA production with increase of the initial glycerol content. The inhibition phenomenon was attributed to an immediate effect of glycerol on the biological activity. It was also established that the presence of glycerol at high concentration induces an increase in the time necessary for the cells to reach their maximal level of specific rates. This result tends to show that glycerol brings into play on the biological system the capacity to reach its optimal range of activity. The main models found in the literature dealing with substrate inhibition phenomena were then tested on experimental data. The exponential model describes at best the glycerol inhibition on growth (=0.53e(–S/93.6)) and on DHA production (qP=7e(–S/76.7)). The kinetic study and modelization of the inhibition effect of glycerol on DHA production allows one, therefore, to fill the gap in the fundamental knowledge of this industrial fermentation, to show the maladjustment of the classical fermentation process used (batch), and to reconsider the conception for the optimization of the production (proposition of more adapted process like fed-batch and/or biphasic systems).  相似文献   

13.
Gluconobacter melanogenus 3293 converts glycerol to dihydroxyacetone(DHA) during exponential growth on a yeast extract-phosphate medium at pH 7. The efficiency of this conversion in 25-liter batch fermentations has been found to increase over threefold, when oxygen tension is controlled by increasing the partial pressure of oxygen in the aeration. Conversion of glycerol to DHA does not occur under oxygen-limited fermentation conditions. When the dissolved oxygen tension was maintained at 0.05 atmospheres (using oxygen-enriched air), quantitative conversion of up to 100 g of glycerol/liter to DHA was obtained in 33 h. The amount of glycerol converted can be increased without increasing impeller speed or aeration rate. This increase is not the result of increased production of cell mass. The specific conversion of glycerol to DHA increased from 12.2 g of DHA/g of cell mass at the point of maximum conversion to 35.8 with oxygen enrichment. This increased specific production occurred even though the specific growth rate during the period of oxygen enrichment decreased from 0.23 to 0.06/h.  相似文献   

14.
An effective method for the valorisation of the main by-product of biodiesel production, i.e. glycerol is investigated in this work. It involves the biological conversion of glycerol to succinic acid, a top added-value material, which can be used as a building block for the production of various commodity and specialty chemicals. Our aim is to give new insights into this bioprocess, which has so far received little attention and is open for further investigation, through a combination of experimental and computational studies. The microorganism employed here was Actinobacillus succinogenes in batch bioreactors where glycerol was used as the sole carbon source.The highest obtained product yield, final succinate concentration and productivity were found to be equal to 1.23 g-succinate/g-glycerol, 29.3 g-succinate/L and 0.27 g-succinate/L/h, respectively. Furthermore, an unstructured model of the batch experiments was developed by considering both substrate and product inhibition. Kinetic parameters of the model were estimated by minimising the difference between experimental and predicted values. The corresponding optimisation problem was solved by using a combination of stochastic and deterministic methodologies, with the goal to probabilistically compute global minima and the resulting parameter values. The model developed can be utilised to successfully predict the concentration profiles of the five most important state variables (biomass, glycerol, succinic acid, formic acid, and acetic acid) with different initial glycerol concentrations. Scaled-up experiments in larger-scale bioreactors were used for further validation purposes. Our model can be further used to compute optimal operating/parametric conditions, which maximise yield, productivity and/or the final succinic acid concentration.  相似文献   

15.
Umbelopsis ramanniana was investigated to increase carotenoid production. Nine different carbon sources and six different nitrogen sources were evaluated for the maximum carotenoid production. The most effective nitrogen and carbon sources were KNO3 and lactose, respectively. Then, the optimization of medium components for enhancement of carotenoid production by Umbelopsis ramanniana was achieved using Plackett–Burman design. Box–Behnken response surface methodology was applied to further optimize carotenoid and biomass production. Carbon to nitrogen ratio, lactose concentration, and shaking speed were studied as variables in Box–Behnken design. The optimum conditions for carotenoid and biomass production were determined as 32.42 g/L of lactose concentration, 20:1 of carbon to nitrogen ratio, and shaking speed of 130 rpm. The maximum carotenoid and biomass production under optimized conditions were 1141 μg/L (β-carotene-Eq) and 13.14 g/L, respectively. When compared to the control fermentation, carotenoid, and biomass production were increased by about 2 and 1.3 folds, respectively.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, the two most important systems for conveying excess cytosolic NADH to the mitochondrial respiratory chain are external NADH dehydrogenase (Nde1p/Nde2p) and the glycerol-3-phosphate dehydrogenase shuttle. In the latter system, NADH is oxidized to NAD+ and dihydroxyacetone phosphate is reduced to glycerol 3-phosphate by the cytosolic Gpd1p; glycerol 3-phosphate gives two electrons to the respiratory chain via mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p)-regenerating dihydroxyacetone phosphate. Both Nde1p/Nde2p and Gut2p are located in the inner mitochondrial membrane with catalytic sites facing the intermembranal space. In this study, we showed kinetic interactions between these two enzymes. First, deletion of either one of the external dehydrogenases caused an increase in the efficiency of the remaining enzyme. Second, the activation of NADH dehydrogenase inhibited the Gut2p in such a manner that, at a saturating concentration of NADH, glycerol 3-phosphate is not used as respiratory substrate. This effect was not a consequence of a direct action of NADH on Gut2p activity because both NADH dehydrogenase and its substrate were needed for Gut2p inhibition. This kinetic regulation of the activity of an enzyme as a function of the rate of another having a similar physiological function may be allowed by their association into the same supramolecular complex in the inner membrane. The physiological consequences of this regulation are discussed.  相似文献   

17.
Summary Lignin peroxidase production by several strains of Phanerochaete chrysosporium was determined during growth on glycerol under conditions of nitrogen sufficiency. Fungal strains which grew poorest on glycerol produced the highest titres of lignin peroxidase whereas enzyme levels were much lower when marginally greater biomass values were recorded. In the case of P. chrysosporium strain INA-12, the nature of the nitrogen source had a pronounced effect on both growth and enzyme production. Highest biomass values were obtained when l-glutamate or l-glutamine served as the major nitrogen source but enzyme synthesis was normally repressed completely. Lignin peroxidase activity in this strain was maximal when the initial pH of the culture medium was adjusted to pH 5.0.  相似文献   

18.
When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.  相似文献   

19.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde   总被引:1,自引:0,他引:1  
When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号