首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Process control in cell culture technology using dielectric spectroscopy   总被引:1,自引:0,他引:1  
In the biopharmaceutical industry, mammalian and insect cells as well as plant cell cultures are gaining worldwide importance to produce biopharmaceuticals and as products themselves, for example in stem cell therapy. These highly sophisticated cell-based production processes need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time in-line monitoring tools are now recommended. Dielectric spectroscopy (DS) can serve as a tool to satisfy some PAT requirements. DS has been used in the medical field for quite some time and it may allow real-time process monitoring of biological cell culture parameters. DS has the potential to enable process optimization, automation, cost reduction, and a more consistent product quality. Dielectric spectroscopy is reviewed here as a tool to monitor biochemical processes. Commercially available dielectric sensing systems are discussed. The potential of this technology is demonstrated through examples of current and potential future applications in research and industry for mammalian and insect cell culture.  相似文献   

3.
The Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach. This study utilizes these tools to build partial least squares (PLS) regression models to provide real time monitoring of glycation and glycosylation profiles. In total, seven cell line specific chemometric PLS models; % mono-glycated, % non-glycated, % G0F-GlcNac, % G0, % G0F, % G1F, and % G2F were considered. PLS models were initially developed using small scale data to verify the capability of Raman to measure these CQAs effectively. Accurate PLS model predictions were observed at small scale (5 L). At manufacturing scale (2000 L) some glycosylation models showed higher error, indicating that scale may be a key consideration in glycosylation profile PLS model development. Model robustness was then considered by supplementing models with a single batch of manufacturing scale data. This data addition had a significant impact on the predictive capability of each model, with an improvement of 77.5% in the case of the G2F. The finalized models show the capability of Raman as a PAT tool to deliver real time monitoring of glycation and glycosylation profiles at manufacturing scale.  相似文献   

4.
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.  相似文献   

5.
In the biopharmaceutical industry, adherent growing stem cell cultures gain worldwide importance as cell products. The cultivation process of these cells, such as in stirred tank reactors or in fixed bed reactors, is highly sophisticated. Cultivations need to be monitored and controlled to guarantee product quality and to satisfy GMP requirements. With the process analytical technology (PAT) initiative, requirements regarding process monitoring and control have changed and real-time on-line monitoring tools are recommended. A tool meeting the new requirements may be the dielectric spectroscopy for online viable cell mass determination by measurement of the permittivity. To establish these tools, proper offline methods for data correlation are required. The cell number determination of adherent cells on microcarrier is difficult, as it requires cell detachment from the carrier, which highly increases the statistical error. As an offline method, a fluorescence assay based on SYBR®GreenI was developed allowing fast and easy total cell concentration determination without the need to detach the cells from the carrier. The assay is suitable for glass carriers used in stirred tank reactor systems or in fixed bed systems, may be suitable for different cell lines and can be applied to high sample numbers easily. The linear dependency of permittivity to cell concentration of suspended stem cells with the dielectric spectroscopy is shown for even very small cell concentrations. With this offline-method, a correlation of the cell concentration grown on carrier to the permittivity data measured by the dielectric spectroscopy was done successfully.  相似文献   

6.
Raman spectroscopy is a multipurpose analytical technology that has found great utility in real-time monitoring and control of critical performance parameters of cell culture processes. As a process analytical technology (PAT) tool, the performance of Raman spectroscopy relies on chemometric models that correlate Raman signals to the parameters of interest. The current calibration techniques yield highly specific models that are reliable only on the operating conditions they are calibrated in. Furthermore, once models are calibrated, it is typical for the model performance to degrade over time due to various recipe changes, raw material variability, and process drifts. Maintaining the performance of industrial Raman models is further complicated due to the lack of a systematic approach to assessing the performance of Raman models. In this article, we propose a real-time just-in-time learning (RT-JITL) framework for automatic calibration, assessment, and maintenance of industrial Raman models. Unlike traditional models, RT-JITL calibrates generic models that can be reliably deployed in cell culture experiments involving different modalities, cell lines, media compositions, and operating conditions. RT-JITL is a first fully integrated and fully autonomous platform offering a self-learning approach for calibrating and maintaining industrial Raman models. The efficacy of RT-JITL is demonstrated on experimental studies involving real-time predictions of various cell culture performance parameters, such as metabolite concentrations, viability, and viable cell density. RT-JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, assessed, and maintained, which to the best of authors' knowledge, have not been done before.  相似文献   

7.
Flow cytometry has been used to accurately monitor cell events that indicate the spatio-temporal state of a bioreactor culture. The introduction of process analytical technology (PAT) has led to process improvements using real-time or semi real-time monitoring systems. Integration of flow cytometry into an automated scheme for improved process monitoring can benefit PAT in bioreactor-based biopharmaceutical productions by establishing optimum process conditions and better quality protocols. Herein, we provide detailed protocols for establishing an automated flow cytometry system that can be used to investigate and monitor cell growth, viability, cell size, and cell cycle data. A method is described for the use of such a system primarily focused on CHO cell culture, although it is foreseen the information gathered from automated flow cytometry can be applied to a variety of cell lines to address both PAT requirements and gain further understanding of complex biological systems.  相似文献   

8.
In this investigation, the fermentation step of a standard mammalian cell-based industrial bioprocess for the production of a therapeutic protein was studied, with particular emphasis on the evolution of cell viability. This parameter constitutes one of the critical variables for bioprocess monitoring since it can affect downstream operations and the quality of the final product. In addition, when the cells experiment an unpredictable drop in viability, the assessment of this variable through classic off-line methods may not provide information sufficiently in advance to take corrective actions. In this context, Process Analytical Technology (PAT) framework aims to develop novel strategies for more efficient monitoring of critical variables, in order to improve the bioprocess performance. Thus, in this work, a set of chemometric tools were integrated to establish a PAT strategy to monitor cell viability, based on fluorescence multiway data obtained from fermentation samples of a particular bioprocess, in two different scales of operation. The spectral information, together with data regarding process variables, was integrated through chemometric exploratory tools to characterize the bioprocess and stablish novel criteria for the monitoring of cell viability. These findings motivated the development of a multivariate classification model, aiming to obtain predictive tools for the monitoring of future lots of the same bioprocess. The model could be satisfactorily fitted, showing the non-error rate of prediction of 100%.  相似文献   

9.
A major challenge in the transition to continuous biomanufacturing is the lack of process analytical technology (PAT) tools which are able to collect real-time information on the process and elicit a response to facilitate control. One of the critical quality attributes (CQAs) of interest during monoclonal antibodies production is aggregate formation. The development of a real-time PAT tool to monitor aggregate formation is then crucial to have immediate feedback and process control. Miniaturized sensors placed after each unit operation can be a powerful solution to speed up an analytical measurement due to their characteristic short reaction time. In this work, a micromixer structure capable of mixing two streams is presented, to be employed in the detection of mAb aggregates using fluorescent dyes. Computational fluid dynamics (CFD) simulations were used to compare the mixing performance of a series of the proposed designs. A final design of a zigzag microchannel with 45° angle was reached and this structure was subsequently fabricated and experimentally validated with colour dyes and, later, with a FITC-IgG molecule. The designed zigzag micromixer presents a mixing index of around 90%, obtained in less than 30 seconds. Therefore, a micromixer channel capable of a fast and efficient mixing is hereby demonstrated, to be used as a real-time PAT tool for a fluorescence based detection of protein aggregation.  相似文献   

10.
The application of PAT for in‐line monitoring of biopharmaceutical manufacturing operations has a central role in developing more robust and consistent processes. Various spectroscopic techniques have been applied for collecting real‐time data from cell culture processes. Among these, Raman spectroscopy has been shown to have advantages over other spectroscopic techniques, especially in aqueous culture solutions. Measurements of several process parameters such as glucose, lactate, glutamine, glutamate, ammonium, osmolality and VCD using Raman‐based chemometrics models have been reported in literature. The application of Raman spectroscopy, coupled with calibration models for amino acid measurement in cell cultures, has been assessed. The developed models cover four amino acids important for cell growth and production: tyrosine, tryptophan, phenylalanine and methionine. The chemometrics models based on Raman spectroscopy data demonstrate the significant potential for the quantification of tyrosine, tryptophan and phenylalanine. The model for methionine would have to be further refined to improve quantification.  相似文献   

11.
Product quality assurance strategies in production of biopharmaceuticals currently undergo a transformation from empirical “quality by testing” to rational, knowledge‐based “quality by design” approaches. The major challenges in this context are the fragmentary understanding of bioprocesses and the severely limited real‐time access to process variables related to product quality and quantity. Data driven modeling of process variables in combination with model predictive process control concepts represent a potential solution to these problems. The selection of statistical techniques best qualified for bioprocess data analysis and modeling is a key criterion. In this work a series of recombinant Escherichia coli fed‐batch production processes with varying cultivation conditions employing a comprehensive on‐ and offline process monitoring platform was conducted. The applicability of two machine learning methods, random forest and neural networks, for the prediction of cell dry mass and recombinant protein based on online available process parameters and two‐dimensional multi‐wavelength fluorescence spectroscopy is investigated. Models solely based on routinely measured process variables give a satisfying prediction accuracy of about ± 4% for the cell dry mass, while additional spectroscopic information allows for an estimation of the protein concentration within ± 12%. The results clearly argue for a combined approach: neural networks as modeling technique and random forest as variable selection tool.  相似文献   

12.
The Food and Drug Administration (FDA) initiative of Process Analytical Technology (PAT) encourages the monitoring of biopharmaceutical manufacturing processes by innovative solutions. Raman spectroscopy and the chemometric modeling tool partial least squares (PLS) have been applied to this aim for monitoring cell culture process variables. This study compares the chemometric modeling methods of Support Vector Machine radial (SVMr), Random Forests (RF), and Cubist to the commonly used linear PLS model for predicting cell culture components—glucose, lactate, and ammonia. This research is performed to assess whether the use of PLS as standard practice is justified for chemometric modeling of Raman spectroscopy and cell culture data. Model development data from five small-scale bioreactors (2 × 1 L and 3 × 5 L) using two Chinese hamster ovary (CHO) cell lines were used to predict against a manufacturing scale bioreactor (2,000 L). Analysis demonstrated that Cubist predictive models were better for average performance over PLS, SVMr, and RF for glucose, lactate, and ammonia. The root mean square error of prediction (RMSEP) of Cubist modeling was acceptable for the process concentration ranges of glucose (1.437 mM), lactate (2.0 mM), and ammonia (0.819 mM). Interpretation of variable importance (VI) results theorizes the potential advantages of Cubist modeling in avoiding interference of Raman spectral peaks. Predictors/Raman wavenumbers (cm−1) of interest for individual variables are X1139–X1141 for glucose, X846–X849 for lactate, and X2941–X2943 for ammonia. These results demonstrate that other beneficial chemometric models are available for use in monitoring cell culture with Raman spectroscopy.  相似文献   

13.
Nascent advanced therapies, including regenerative medicine and cell and gene therapies, rely on the production of cells in bioreactors that are highly heterogeneous in both space and time. Unfortunately, advanced therapies have failed to reach a wide patient population due to unreliable manufacturing processes that result in batch variability and cost prohibitive production. This can be attributed largely to a void in existing process analytical technologies (PATs) capable of characterizing the secreted critical quality attribute (CQA) biomolecules that correlate with the final product quality. The Dynamic Sampling Platform (DSP) is a PAT for cell bioreactor monitoring that can be coupled to a suite of sensor techniques to provide real-time feedback on spatial and temporal CQA content in situ. In this study, DSP is coupled with electrospray ionization mass spectrometry and direct-from-culture sampling to obtain measures of CQA content in bulk media and the cell microenvironment throughout the entire cell culture process (≈3 weeks). Post hoc analysis of this real-time data reveals that sampling from the microenvironment enables cell state monitoring (e.g., confluence, differentiation). These results demonstrate that an effective PAT should incorporate both spatial and temporal resolution to serve as an effective input for feedback control in biomanufacturing.  相似文献   

14.
Multi-wavelength fluorescence spectroscopy was evaluated as a tool for on-line monitoring of recombinant Escherichia coli cultivations expressing human basic fibroblast growth factor (hFGF-2). The data sets for the various combinations of the excitation and emission spectra from batch cultivations were analyzed using principal component analysis. Chemometric models (the partial least squares method) were developed for correlating the fluorescence data and the experimentally measured variables such as the biomass and glucose concentrations as well as the carbon dioxide production rate. Excellent correlations were obtained for these variables for the calibration cultivations. The predictability of these models was further tested in batch and fed-batch cultivations. The batch cultivations were well predicted by the PLS models for biomass, glucose concentrations and carbon dioxide production rate (RMSEPs were respectively 5%, 7%, 9%). However, when tested for biomass concentrations in fed-batch cultivations (with final biomass three times higher than the highest calibration data) the models had good predictability at high growth rates (RMSEPs were 3% and 4%, respectively for uninduced and induced fed-batch cultivations), which was as good as for the batch cultivations used for developing the models (RMSEPs were 3% and 5%, respectively for uninduced and induced batch cultivations). The fed-batch cultivations performed at low growth rates exhibited much higher fluorescence for fluorophores such as flavin and NAD(P)H as compared to fed-batch cultivations at high growth rate. Therefore, the PLS models tended to over-predict the biomass concentrations at low growth rates. Obviously the cells changed their concentration of biogenic fluorophores depending on the growth rate. Although multi-wavelength fluorescence spectroscopy is a valuable tool for on-line monitoring of bioprocess, care must be taken to re-calibrate the PLS models at different growth rates to improve the accuracy of predictions.  相似文献   

15.
16.
In this work, synchronous fluorescence spectroscopy (SFS) is evaluated as a new tool for real-time bioprocess monitoring of animal cell cultures. This technique presents several advantages over the traditional two-dimensional (2D) fluorometry since it provides data on various fluorescent compounds in a single spectrum, showing improved peak resolution and recording speed. Bioreactor cultures of three monoclonal antibody-producing CHO cell lines were followed in situ by both 2D and synchronous fluorometry techniques. The time profiles of the main spectral features in each data type present some differences, but principal component analysis indicated both as containing enough information to distinguish the cultures. Partial least squares regression models were then independently developed for viable cell density and antibody levels on the basis of the different fluorescence signals recorded, hiding half of the dataset for subsequent validation purposes. Regardless of the signal used, model predictions fit very well the off-line measurements; still, the synchronous spectra collected at a wavelength difference of 20 nm allowed comparable and superior performances for cell density and antibody titer, respectively, with validation accuracies higher than 91%. Therefore, SFS compares favorably with the traditional 2D approach, becoming an improved, faster option for real-time monitoring of cells and product titer over culture time. The readiness in data acquisition facilitates the design of process control strategies meeting the requirements of a PAT application.  相似文献   

17.
During cell cultivation processes for the production of biopharmaceuticals, good process performance and good product quality can be ensured by online monitoring of critical process parameters (e.g. temperature, pH, or dissolved oxygen). These data can be used in real‐time for process control, as suggested by the process analytical technology (PAT) initiative. Today, solutions for real‐time monitoring of parameters such as concentrations of cells, main nutrients, and metabolism by‐products are developing, but applications of these more complex tools in industrial settings are still limited. Here, we evaluated the use of dielectric spectroscopy (DS) and near‐infrared spectroscopy (NIRS) as PAT tools for a perfusion PER.C6® cultivation process. We showed that DS enabled predictions of viable cell density from the cultivation vessel, with a root mean square error of prediction (RMSEP) of 4.4% of the calibration range. Additionally, predictions of glucose and lactate concentrations from the cultivation vessel (RMSEP of 10 and 14%, respectively) and from the perfusion stream (RMSEP of 12 and 10%, respectively) were achieved with NIRS. We also showed that the perfusion stream offers great opportunities for noninvasive, yet frequent process monitoring. Accurate online monitoring of critical process parameters with PAT tools is the essential first step toward increased control of process output.  相似文献   

18.
Rapid increase of product titers in upstream processes has presented challenges for downstream processing, where purification costs increase linearly with the increase of the product yield. Hence, innovative solutions are becoming increasingly popular. Process Analytical Technology (PAT) tools, such as spectroscopic techniques, are on the rise due to their capacity to provide real-time, precise analytics. This ensures consistent product quality and increased process understanding, as well as process control. Mid-infrared spectroscopy (MIR) has emerged as a highly promising technique within recent years, owing to its ability to monitor several critical process parameters at the same time and unchallenging spectral analysis and data interpretation. For in-line monitoring, Attenuated Total Reflectance—Fourier Transform Infrared Spectroscopy (ATR-FTIR) is a method of choice, as it enables reliable measurements in a liquid environment, even though water absorption bands are present in the region of interest. Here, we present MIR spectroscopy as a monitoring tool of critical process parameters in ultrafiltration/diafiltration (UFDF). MIR spectrometer was integrated in the UFDF process in an in-line fashion through a single-use flow cell containing a single bounce silicon ATR crystal. The results indicate that the one-point calibration algorithm applied to the MIR spectra, predicts highly accurate protein concentrations, as compared with validated offline analytical methods.  相似文献   

19.
Real-time monitoring of bioprocesses by the integration of analytics at critical unit operations is one of the paramount necessities for quality by design manufacturing and real-time release (RTR) of biopharmaceuticals. A well-defined process analytical technology (PAT) roadmap enables the monitoring of critical process parameters and quality attributes at appropriate unit operations to develop an analytical paradigm that is capable of providing real-time data. We believe a comprehensive PAT roadmap should entail not only integration of analytical tools into the bioprocess but also should address automated-data piping, analysis, aggregation, visualization, and smart utility of data for advanced-data analytics such as machine and deep learning for holistic process understanding. In this review, we discuss a broad spectrum of PAT technologies spanning from vibrational spectroscopy, multivariate data analysis, multiattribute chromatography, mass spectrometry, sensors, and automated-sampling technologies. We also provide insights, based on our experience in clinical and commercial manufacturing, into data automation, data visualization, and smart utility of data for advanced-analytics in PAT. This review is catered for a broad audience, including those new to the field to those well versed in applying these technologies. The article is also intended to give some insight into the strategies we have undertaken to implement PAT tools in biologics process development with the vision of realizing RTR testing in biomanufacturing and to meet regulatory expectations.  相似文献   

20.
To increase the process productivity and product quality of bioprocesses, the in-line monitoring of critical process parameters is highly important. For monitoring substrate, metabolite, and product concentrations, Raman spectroscopy is a commonly used Process Analytical Technology (PAT) tool that can be applied in-situ and non-invasively. However, evaluating bioprocess Raman spectra with a robust state-of-the-art statistical model requires effortful model calibration. In the present study, we in-line monitored a glucose to ethanol fermentation by Saccharomyces cerevisiae (S. cerevisiae) using Raman spectroscopy in combination with the physics-based Indirect Hard Modeling (IHM) and showed successfully that IHM is an alternative to statistical models with significantly lower calibration effort. The IHM prediction model was developed and calibrated with only 16 Raman spectra in total, which did not include any process spectra. Nevertheless, IHM's root mean square errors of prediction (RMSEPs) for glucose (3.68 g/L) and ethanol (1.69 g/L) were comparable to the prediction quality of similar studies that used statistical models calibrated with several calibration batches. Despite our simple calibration, we succeeded in developing a robust model for evaluating bioprocess Raman spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号