首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple - involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules - and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity.  相似文献   

2.
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple – involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules – and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity.  相似文献   

3.
Seven commercially available microbial lipases were immobilised as their cross-linked enzyme aggregates (CLEAs). Preparations with enhanced activity were obtained by a judicious choice of the precipitant [(NH4)2SO4, 1,2-dimethoxyethane or acetone] and by adding either a crown ether or surfactant, depending on the source of the enzyme. Thus, precipitation of the lipases from Thermomyces lanuginosus and Rhizomucor miehei with (NH4)2SO4 in the presence of SDS, followed by cross-linking with glutaraldehyde, afforded CLEAs with three and two times, respectively, the hydrolytic activity of the native enzymes. Preparations with up to ten times enhanced activity in organic medium were similarly prepared.  相似文献   

4.
Four different ionic liquids, based on dialkylimidazolium cations associated with perfluorinated and bis(trifluoromethyl)sulfonyl amide anions were used as reaction media for butyl butyrate synthesis catalyzed by free Candida antarctica lipase B at 2% (v/v) water content and 50 °C. Lipase had enhanced synthetic activity in all ionic liquids in comparison with two organic solvents (hexane, and 1-butanol), the enhanced activity being related to the increase in polarity of ionic liquids. The continuous operation of lipase with all the assayed ionic liquids showed over-stabilization of the enzyme. The reuse of free lipase in 1-butyl-3-methylimidazolium hexafluorophosphate in continuous operation cycles showed a half-life time 2300 times greater than that observed when the enzyme was incubated in the absence of substrate (3.2 h), and a selectivity higher than 90%.  相似文献   

5.
Candida antarctica lipase B (CALB) is a versatile biocatalyst used for a wide range of biotransformation. Methods for low cost production of this enzyme are highly desirable. Here, we report a mass production method of CALB using transgenic rice seeds as the bioreactor. The transgenic rice transformed with the CALB gene under the control of the promoter of the rice seed storage protein GT1 was found to have accumulated a large quantity of CALB in seeds. The transgenic line with the highest lipolytic activity reached to 85 units per gram of dry seeds. One unit is defined as the amount of lipase necessary to liberate 1 μmol p‐nitrophenol from p‐nitrophenyl butyrate in 1 min. The rice recombinant lipase (rOsCALB) from this line represents 40% of the total soluble proteins in the crude seed extracts. The enzyme purified from the rice seeds had an optimal temperature of 40 °C, and optimal pH of 8.5, similar to that of the fermentation products. Test of its conversion ability as a biocatalyst for biodiesel production suggested that rOsCALB is functionally identical to the fermentation products in its industrial application.  相似文献   

6.
Lipases represent a versatile class of biocatalysts with numerous potential applications in industry including the production of biodiesel via enzyme‐catalyzed transesterification. In this article, we have investigated the performance of cp283, a variant of Candida antarctica lipase B (CALB) engineered by circular permutation, with a series of esters, as well as pure and complex triglycerides. In comparison with wild‐type CALB, the permutated enzyme showed consistently higher catalytic activity (2.6‐ to 9‐fold) for trans and interesterification of the different substrates with 1‐butanol and ethyl acetate as acyl acceptors. Differences in the observed rates for wild‐type CALB and cp283 are believe to be related to changes in the rate‐determining step of the catalytic cycle as a result of circular permutation. Biotechnol. Bioeng. 2010;105: 44–50. © 2009 Wiley Periodicals, Inc.  相似文献   

7.
Lipase B from Candida antarctica (CALB) is not very adequate to prepare crosslinked enzyme aggregates (CLEAs). Although the precipitation step is easy using different precipitants, the crosslinking step becomes a problem due to the low amount of Lys residues in this enzyme. In this paper, we have enriched the enzyme in amino groups by chemical amination of the enzyme using ethylenediamine and carbodiimide. The modification was performed using a solid phase strategy modifying the enzyme adsorbed on octyl-Sepharose. After desorption from the support, the enzyme was more active at pH 7.0 than the unmodified enzyme. This modified enzyme showed to be suitable to produce CLEAs. Using this modified enzyme, precipitation is also effective but the crosslinking step did not fail in giving an intense intermolecular crosslinking. This way, the CLEA did not release enzyme molecules even if boiled in SDS. Stability of this CLEA was higher in both thermal and cosolvent inactivation experiments than that of the coCLEA produced by coagregation of BSA and CALB; another alternative to produce a CLEA of this interesting enzyme.The strategy may be of high interest for many other enzymes as a way to both permit the production of CLEAs and to improve enzyme stability during CLEA production.  相似文献   

8.
A new biocatalyst of lipase B from Candida antarctica (MCI-CALB) immobilized on styrene-divinylbenzene beads (MCI GEL CHP20P) was compared with the commercial Novozym 435 (immobilized lipase) in terms of their performances as biocatalysts for the esterification of acetic acid and n-butanol. The effects of experimental conditions on reaction rates differed for each biocatalyst, showing different optimal values for water content, temperature, and substrate molar ratio. MCI-CALB could be used at higher acid concentrations, up to 0.5 M, while Novozym 435 became inactivated at these acid concentrations. Although Novozym 435 exhibited 30% higher initial activity than MCI-CALB for the butyl acetate synthesis, the reaction course was much more linear using the new preparation, meaning that the MCI-CALB allows for higher productivities per cycle. Both preparations produced around 90% of yield conversions after only 2 h of reaction, using 10% (mass fraction) of enzyme. However, the main advantage of the new biocatalyst was the superior performance during reuse. While Novozym 435 was fully inactivated after only two batches, MCI-CALB could be reused for six consecutive cycles without any washings and keeping around 70% of its initial activity. It is proposed that this effect is due to the higher hydrophobicity of the new support, which does not retain water or acid in the enzyme environment. MCI-CALB has shown to be a very promising biocatalyst for the esterification of small-molecule acids and alcohols.  相似文献   

9.
This work reviews the stripping off, role of water molecules in activity, and flexibility of immobilized Candida antarctica lipase B (CALB). Employment of CALB in ring opening polyester synthesis emphasizing on a polylactide is discussed in detail. Execution of enzymes in place of inorganic catalysts is the most green alternative for sustainable and environment friendly synthesis of products on an industrial scale. Robust immobilization and consequently performance of enzyme is the essential objective of enzyme application in industry. Water bound to the surface of an enzyme (contact class of water molecules) is inevitable for enzyme performance; it controls enzyme dynamics via flexibility changes and has intensive influence on enzyme activity. The value of pH during immobilization of CALB plays a critical role in fixing the active conformation of an enzyme. Comprehensive selection of support and protocol can develop a robust immobilized enzyme thus enhancing its performance. Organic solvents with a log P value higher than four are more suitable for enzymatic catalysis as these solvents tend to strip away very little of the enzyme surface bound water molecules. Alternatively ionic liquid can work as a more promising reaction media. Covalent immobilization is an exclusively reliable technique to circumvent the leaching of enzymes and to enhance stability. Activated polystyrene nanoparticles can prove to be a practical and economical support for chemical immobilization of CALB. In order to reduce the E-factor for the synthesis of biodegradable polymers; enzymatic ring opening polyester synthesis (eROPS) of cyclic monomers is a more sensible route for polyester synthesis. Synergies obtained from ionic liquids and immobilized enzyme can be much effective eROPS.  相似文献   

10.
Candida antarctica lipase B (CALB) is a widely used biocatalyst with high activity and specificity for a wide range of primary and secondary alcohols. However, the range of converted carboxylic acids is more narrow and mainly limited to unbranched fatty acids. To further broaden the biotechnological applications of CALB it is of interest to expand the range of converted carboxylic acid and extend it to carboxylic acids that are branched or substituted in close proximity of the carboxyl group. An in silico library of 2400 CALB variants was built and screened in silico by substrate-imprinted docking, a four step docking procedure. First, reaction intermediates of putative substrates are covalently docked into enzyme active sites. Second, the geometry of the resulting enzyme-substrate complex is optimized. Third, the substrate is removed from the complex and then docked again into the optimized structure. Fourth, the resulting substrate poses are rated by geometric filter criteria as productive or non-productive poses. Eleven enzyme variants resulting from the in silico screening were expressed in Escherichia coli BL21 and measured in the hydrolysis of two branched fatty acid esters, isononanoic acid ethyl ester and 2-ethyl hexanoic acid ethyl esters. Five variants showed an initial increase in activity. The variant with the highest wet mass activity (T138S) was purified and further characterized. It showed a 5-fold increase in hydrolysis of isononanoic acid ethyl ester, but not toward sterically more demanding 2-ethyl hexanoic acid ethyl ester.  相似文献   

11.
Abstract

The influence of solvent and acyl group donor on selectivity of the transesterification reaction of 1-[1′,3′-dihydroxy-2′-propoxymethyl]-5-methyluracil, a structural analogue of ganciclovir was examined. Lipase (EC 3.1.1.3) B from Candida antarctica (CALB) enabled desymmetrization of prochiral hydroxyl groups when 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was used as a reaction medium. It was observed that CALB was up to 2.7–4 times more enantioselective in the ionic liquid [Bmim][PF6] than in conventional organic solvents.  相似文献   

12.
Cross-linked enzyme aggregates (CLEAs) are prepared by precipitation of an enzyme and then chemical cross-linking the precipitate. Three CLEAs of lipase with glutaraldehyde concentrations of 10 mM (CLEA A), 40 mM (CLEA B) and 60 mM (CLEA C) were prepared. Studies show that there is a trade-off between thermal stability vs transesterification/hydrolysis rate vs enantioselectivity. The initial rates for transesterification of β-citronellol for the uncross-linked enzyme and CLEAs A, B and C were 243, 167, 102 and 40 µmol mg-1 h-1, respectively. Their thermal stabilities in aqueous media, as reflected by their half-life values at 55°C, were 6, 9, 13 and 16 h, respectively. The enantioselectivity, E values (for kinetic resolution of β-citronellol by transesterification) were 19, 74, 11 and 6, respectively. These results show that CLEA C was the most thermostable; the uncross-linked enzyme was best at obtaining the highest transesterification rate; and CLEA A was best suited for the enantioselective synthesis. Scanning electron microscopy (SEM) showed that the morphology of CLEA was dependent upon the extent of cross-linking.  相似文献   

13.
The use of organic solvents as reaction media for enzymatic reactions has many advantages. Several organic solvents have been proposed as reaction media, especially for transesterifications using Candida antarctica lipase B (CalB). Among organic solvents, tert-butanol is associated with an enhanced conversion rate in bio-diesel production. Thus, it is necessary to understand the effect of tert-butanol on CalB to explain the high-catalytic efficiency compared with the reaction in other hydrophilic organic solvents. In this study, the effects of tert-butanol on the structure of CalB were investigated by MD simulations. The overall flexibility was increased in the presence of tert-butanol. The substrate entrance and the binding pocket size of CalB in tert-butanol were maintained as in TIP3P water. The distance between the catalytic residues of CalB in tert-butanol indicated a higher likelihood of forming hydrogen bonds. These structural analyses could be useful for understanding the effect of tert-butanol on lipase transesterification.  相似文献   

14.
This article reports the cell‐free expression of functional Lipase B from Candida antarctica (CalB) in an Escherichia coli extract. Although most of the cell‐free synthesized CalB was insoluble under conventional reaction conditions, the combined use of molecular chaperones led to the soluble expression of CalB. In addition, the functional enzyme was generated by applying the optimal redox potential. When examined using p‐nitrophenyl palmitate as a substrate, the specific activity of the cell‐free synthesized CalB was higher than that of the reference protein produced in Pichia pastoris. These results highlight the potential of cell‐free protein synthesis technology as a powerful platform for the rapid expression, screening and analysis of industrially important enzymes. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
Twenty-one different organic solvents were assayed as possible reaction media for the synthesis of butyryl esters from trimethylammonium alcohols in dry conditions catalyzed by immobilized Candida antarctica lipase B. The reactions were carried out following a transesterification kinetic approach, using choline and L-carnitine as primary and secondary trimethylammonium alcohols, respectively, and vinyl butyrate as acyl donor. The synthetic activity of the enzyme was strictly dependent on the water content, the position of the hydroxyl group in the trimethylammonium molecule, and the Log P parameter of the assayed solvent. Anhydrous conditions and a high excess of vinyl butyrate over L-carnitine were necessary to synthesize butyryl-L-carnitine. The synthetic reaction rates of butyryl choline were practically 100-fold those of butyryl-L-carnitine with all the assayed solvents. In both cases, the synthetic activity of the enzyme was dependent on the hydrophobicity of the solvent, with the optimal reaction media showing a Log P parameter of between -0.5 and 0.5. In all cases, 2-methyl-2-propanol and 2-methyl-2-butanol were shown to be the best solvents for both their high synthetic activity and negligible loss of enzyme activity after 6 days.  相似文献   

16.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

17.
Cross-linked enzyme aggregate (CLEA) technology has been regarded as an effective carrier-free immobilization method. This method is very attractive due to its simplicity and robustness, as well as for the possibility of using the crude enzyme extract and the opportunity to co-immobilize multiple different enzymes. The resulting CLEAs generally exhibit high catalyst productivities, improved storage and operational stability and are easy to recycle. Nowadays, although the technology has been applied to various enzymes, some undesirable properties have limited its further application. To overcome these limitations, novel strategies have been developing in recent years. This mini-review focuses on process optimization, new improved strategies and the latest advances on CLEAs technology.  相似文献   

18.
19.
Free Candida antarctica lipase B (Lipozyme, CALB L®) was used to produce fatty acid ethyl esters (FAEE) from refined soybean oil in solvent-free media using the conventional (CHS) and microwave (MHS) heating systems. Statistical analyses (95% confidence level) for both reaction products, FAEE and free fatty acids (FFA), were performed. An increase in ethanol:oil molar ratio decreased the catalytic performance of CALB L (p?<?.05). The best conditions using the microwave radiation were a molar ratio of ethanol:oil of 3:1, a water content of 20.3?wt.% and an enzyme loading of 3?wt.% and this resulted in a total ester content of 64.7% in 15?min, while the same condition using the conventional heating gave only 21.4%. Moreover, the reaction equilibrium was reached 16 times faster with microwave than with conventional heating. High ethanol:oil molar ratios had a negative effect on FAEE synthesis with both CHS and MHS, probably due to the partial inactivation of the enzymes. MHS improved the reaction performance of CALB L, but other process parameters will have to be optimized to enhance the resulting FAEE yields. The recovery and reuse of CALB L using a MHS was demonstrated. Hence, the use of microwave radiation under the conditions applied in this study was not detrimental to the catalytic performance of CALB L for at least one reuse.  相似文献   

20.
The effect of solvents and solvent mixtures on the synthesis of myristic acid esters of different carbohydrates with an immobilized lipase from C. antarctica was investigated. The rate of myristyl glucose synthesized by the enzyme was increased from 3.7 to 20.2 micromol min(-1) g(-1) by changing the solvent from pure tert-butanol to a mixture of tert-butanol:pyridine (55:45 v/v), by increasing the temperature from 45 degrees C to 60 degrees C, and by optimizing the relative amounts of glucose, myristic acid, and the enzyme preparation. Addition of more than 2% DMSO to the tert-butanol:pyridine system resulted in a reduction of enzyme activity. Lowering the water content of the enzyme preparation below 0.85% (w/w) resulted in significant decreases in enzyme activity, while increasing the water content up to 2.17% (w/w) did not significantly affect the enzyme activity. The highest yields of myristyl glucose were obtained when an excess of unsolubilized glucose was present in the reaction system. In this case, all of the initially solubilized and a significant amount of the initially unsolubilized glucose was converted to the ester within 24 h of incubation, resulting in a myristyl glucose concentration of 34 mg/mL(-1). Myristic acid esters of fructose (22.3 micromol min(-1) g(-1)), alpha-D-methyl-glucopyranoside (26.9 micromol min(-1) g(-1)) and maltose (1.9 micromol min(-1) g(-1)) could also be prepared using the tert-butanol:pyridine solvent system. No synthesis activity was observed with maltotriose, cellobiose, sucrose, and lactose as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号