首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Hybrid prokaryotic/eukaryotic expression vectors have been used to introduce Drosophila histone genes into CV-1 African green monkey tissue culture cells. Transfection of CV-1 cells with Drosophila genes under the control of insect DNA promoter sequences results in low level expression of histone genes. On the other hand, when the Drosophila H2a gene is juxtaposed downstream from the long terminal repeat sequence of Rous sarcoma virus (RSV) expression of the insect gene is considerably more efficient; both 3' polyadenylated insect histone messenger RNA and putative Drosophila H2a histone protein can be readily detected in the transduced cells. Using this RSV/H2a vector, we have been able to demonstrate the presence of Drosophila H2a histone in monomer nucleosome preparations isolated from transfected CV-1 cells. These results suggest the feasibility of 'remodeling' cellular chromatin in vivo in precisely defined ways. The techniques described may be generally applicable to other genes coding for chromosomal proteins.  相似文献   

5.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

6.
7.
8.
The genome‐wide characterization of long non‐coding RNA (lncRNA) in insects demonstrates their importance in fundamental biological processes. Essentially, an in‐depth understanding of the functional repertoire of lncRNA in insects is pivotal to insect resources utilization and sustainable pest control. Using a custom bioinformatics pipeline, we identified 1861 lncRNAs encoded by 1852 loci in the Sogatella furcifera genome. We profiled lncRNA expression in different developmental stages and observed that the expression of lncRNAs is more highly temporally restricted compared to protein‐coding genes. More up‐regulated Sogatella furcifera lncRNA expressed in the embryo, 4th and 5th instars, suggesting that increased lncRNA levels may play a role in these developmental stages. We compared the relationship between the expression of Sogatella furcifera lncRNA and its nearest protein gene and found that lncRNAs were more correlated to their downstream coding neighbors on the opposite strand. Our genome‐wide profiling of lncRNAs in Sogatella furcifera identifies exciting candidates for characterization of lncRNAs, and also provides information on lncRNA regulation during insect development.  相似文献   

9.
10.
11.
12.
13.
DNA methylation is an important epigenetic marker associated with gene expression regulation in eukaryotes. While promoter methylation is relatively well characterized, the role of intragenic DNA methylation remains unclear. Here, we investigated the relationship of DNA methylation at exons and flanking introns with gene expression and histone modifications generated from a human fibroblast cell-line and primary B cells. Consistent with previous work we found that intragenic methylation is positively correlated with gene expression and that exons are more highly methylated than their neighboring intronic environment. Intriguingly, in this study we identified a unique subset of hypomethylated exons that demonstrate significantly lower methylation levels than their surrounding introns. Furthermore, we observed a negative correlation between exon methylation and the density of the majority of histone modifications. Specifically, we demonstrate that hypo-methylated exons at highly expressed genes are associated with open chromatin and have a characteristic histone code comprised of significantly high levels of histone markings. Overall, our comprehensive analysis of the human exome supports the presence of regulatory hypomethylated exons in protein coding genes. In particular our results reveal a previously unrecognized diverse and complex role of the epigenetic landscape within the gene body.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号