首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
A strain of Kluyveromyces marxianus was grown in batch culture in lactose-based media at varying initial lactose concentrations (10–60 g L–1) at 30°C, pH 5.0, dissolved oxygen concentrations greater than 20%. Increasing the concentration of mineral salts three-fold at 40 g L–1 and 60 g L–1 initial lactose concentration showed only a small increase in the yield of biomass, from 0.38 g g–1 to 0.41 g g–1, indicating that the initial batch cultures were not significantly nutrient- (mineral salts)-limited. A relatively high biomass concentration (105 g L–1) was obtained in fed-batch culture following extended lactose feeding. An average specific growth rate (0.27 h–1), biomass yield (0.38 g g–1) and overall productivity (2.9 g L–1 h–1) were obtained for these fed-batch conditions. This fed-batch protocol provides a strategy for achieving relatively high concentrations and productivities of K. marxianus on other lactose-based substrate streams (e.g., whey) from the dairy industry.  相似文献   

4.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

5.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

6.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

7.

The increasing demand for biopharmaceuticals produced in mammalian cells has driven the industry to enhance productivity of bioprocesses through different strategies. This is why fed-batch and perfusion cultures are considered more attractive choices than batch processes. In this context, the availability of reliable online measuring systems for cell density and metabolic activity estimation will help the application of these processes. The present work focuses on the comparison of two different monitoring tools for indirect estimation of biomass concentration in a HEK293 cell cultures producing IFN-γ: on one side, the oxygen uptake rate (O.U.R.) determination, by means of application of the dynamic method measurement which is already a widely used tool and, on the other side, a new robust online monitoring tool based on the alkali buffer addition used to maintain the pH set point. Both strategies allow a proper monitoring of cell growth and metabolic activity, with precise identification of the balanced cell growth and the most important action in the process, as is the media feeding. The application of these monitoring systems in fed-batch processes allows extending the growth of HEK293 cells, which in turn results in higher final cell concentrations compared with Batch strategy (7 · 106 cells mL−1), achieving 14 · 106 cells mL−1 for the fed-batch based on O.U.R. and 19 · 106 cells mL−1 for the fed-batch based on the alkali addition. Product titter is also increased in respect of the batch strategy (3.70 mg L−1), resulting in 8.27 mg L−1 when fed-batch was based on O.U.R. and 11.49 mg L−1 when it was based on the alkali buffer strategy. Results prove that fed-batch strategy based on the alkali buffer addition is a robust online monitoring method that has shown its great potential to optimize the feeding strategy in HEK293 fed-batch cultures.

  相似文献   

8.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

9.
Yellow Top (Physaria fendleri) is a plant that belongs to the mustard family. This plant is used to produce seeds that are rich in hydroxy oil. After extraction of oil, the presscake is land filled. The seedcake is rich in polymeric sugars and can be used for various bioconversions. For the present case, the seedcake or presscake was hydrolyzed with dilute (0.50% [v/v]) H2SO4 and enzymes to release sugars including glucose, xylose, galactose, arabinose, and mannose. Then, the hydrolyzate was used to produce acetone–butanol–ethanol (ABE). Using 100 gL−1 presscake (prior to pretreatment), 19.22 gL−1 of ABE was successfully produced of which butanol was the major product. In this process, an ABE productivity of 0.48 gL−1 h−1 was obtained. These results are superior to glucose fermentation to produce ABE in which an ABE productivity of 0.42 gL−1 h−1 was obtained. Use of Yellow Top to produce butanol has the following advantages: (i) it is an economic feedstock and is expected to produce butanol economically; (ii) it avoids pollution concerns when not land filled; and (iii) rate of ABE production is not inhibited when fermented this substrate. It is suggested that the potential of this feedstock be further explored by optimizing process parameters for this valuable fermentation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2767, 2019.  相似文献   

10.
In the present study, process engineering strategy was applied to achieve lipid-rich biomass with high density of Chlorella sp. FC2 IITG under photoautotrophic condition. The strategy involved medium optimization, intermittent feeding of limiting nutrients, dynamic change in light intensity, and decoupling growth and lipid induction phases. Medium optimization was performed using combinations of artificial neural network or response surface methodology with genetic algorithm (ANN-GA and RSM-GA). Further, a fed-batch operation was employed to achieve high cell density with intermittent feeding of nitrate and phosphate along with stepwise increase in light intensity. Finally, mutually exclusive biomass and lipid production phases were decoupled into two-stage cultivation process: biomass generation in first stage under nutrient sufficient condition followed by lipid enrichment through nitrogen starvation. The key findings were as follows: (i) ANN-GA resulted in an increase in biomass titer of 157 % (0.95 g L?1) in shake flask and 42.8 % (1.0 g L?1) in bioreactor against unoptimized medium at light intensity of 20 μE m?2 s?1; (ii) further optimization of light intensity in bioreactor gave significantly improved biomass titer of 5.6 g L?1 at light intensity of 250 μE m?2 s?1; (iii) high cell density of 13.5 g L?1 with biomass productivity of 675 mg L?1 day?1 was achieved with dynamic increase in light intensity and intermittent feeding of limiting nutrients; (iv) finally, two-phase cultivation resulted in biomass titer of 17.7 g L?1 and total lipid productivity of 313 mg L?1 day?1 which was highest among Chlorella sp. under photoautotrophic condition.  相似文献   

11.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

12.
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L−1·h−1, respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date.  相似文献   

13.
The long-term process for producing human granulocyte-colony stimulating factor (hG-CSF) was developed using two-stage cyclic fed-batch culture, in which hG-CSF expressing-recombinant Escherichia coli was directed by an L-arabinose promoter system. For the optimization, the preinduction growth rate during the growth stage and the feeding strategy during the production stage were investigated. The maximum harvest volume during the production stage was predicted before long-term cyclic operation. Based on those optimized strategies, the two-stage cyclic fed-batch culture was performed for 12 cycles (86 h). The cell growths in both stages were maintained at 45-50 g/L and 71-77 g/L, respectively. hG-CSF was stably produced at a level of 8-9 g/L and the plasmid stability was maintained at more than 90%. Volumetric productivity by the two-stage cyclic fed-batch culture was 0.643 g/L/h, which was about 280% higher than that of conventional DO-stat fed-batch culture.  相似文献   

14.
A novel butanol fermentation process was developed in which sweet sorghum bagasse (SSB) was pretreated using liquid hot water (LHW) pretreatment technique followed by enzymatic hydrolysis and butanol (acetone butanol ethanol (ABE)) fermentation. A pretreatment temperature of 200 °C resulted in the generation of a hydrolyzate that inhibited butanol fermentation. When SSB pretreatment temperature was decreased to 190 °C (0-min holding time), the hydrolyzate was successfully fermented without inhibition and an ABE productivity of 0.51 g L?1 h?1 was achieved which is comparable to the 0.49 g L?1 h?1 observed in the control fermentation where glucose was used as a feedstock. These results are based on the use of 86 g L?1 SSB solid loadings in the pretreatment reactors. We were also able to increase SSB solid loadings from 120 to 200 g L?1 in the pretreatment step (190 °C) followed by hydrolysis and butanol fermentation. As pretreatment solid loadings increased, ABE yield remained in the range of 0.38–0.46. In these studies, a maximum ABE concentration of 16.88 g L?1 was achieved. Using the LHW pretreatment technique, 88.40–96.00 % of polymeric sugars (cellulose + hemicellulose) were released in the SSB hydrolyzate. The LHW pretreatment technique does not require chemical additions and is environmentally friendly, and the hydrolyzate can be used successfully for butanol fermentation.  相似文献   

15.
Clostridium beijerinckii optinoii is a Clostridium species that produces butanol, isopropanol and small amounts of ethanol. This study compared the performances of batch and continuous immobilized cell fermentations, investigating how media flow rates and nutritional modification affected solvent yields and productivity. In 96-h batch cultures, with 80 % of the 30 g L?1 glucose consumed in synthetic media, solvent concentration was 9.45 g L?1 with 66.0 % as butanol. In a continuous fermentation using immobilized C. beijerinckii optinoii cells, also with 80 % of 30 g L?1 glucose utilization, solvent productivity increased to 1.03 g L?1 h?1. Solvent concentration reached 12.14 g L?1 with 63.0 % as butanol. Adjusting the dilution rate from 0.085 to 0.050 h?1 to allow extended residence time in column was required when glucose concentration in fresh media was increased from 30 to 50 g L?1. When acetate was used to improve the buffer capacity in media, the solvent concentration reached 12.70 on 50 g L?1 glucose. This continuous fermentation using immobilized cells showed technical feasibility for solvent production.  相似文献   

16.
Lactic acid is one of the top 30 potential building-block chemicals from biomass, of which the most extensive use is in the polymerization of lactic acid to poly-lactic-acid (PLA). To reduce the cost of PLA, the search for cheap raw materials and low-cost process for lactic acid production is highly desired. In this study, the final titer of produced L-lactic acid reached a concentration of 185 g·L−1 with a volumetric productivity of 1.93 g·L−1·h−1 by using sugarcane bagasse hydrolysate as the sole carbon source simultaneously with cottonseed meal as cheap nitrogen sources under the open fed-batch fermentation process. Furthermore, a lactic acid yield of 0.99 g per g of total reducing sugars was obtained, which is very close to the theoretical value (1.0 g g−1). No D-isomer of lactic acid was detected in the broth, and thereafter resulted in an optical purity of 100%, which exceeds the requirement of lactate polymerization process. To our knowledge, this is the best performance of fermentation on polymer-grade L-lactic acid production totally using lignocellulosic sources. The high levels of optically pure l-lactic acid produced, combined with the ease of handling and low costs associated with the open fermentation strategy, indicated the thermotolerant Bacillus sp. P38 could be an excellent candidate strain with great industrial potential for polymer-grade L-lactic acid production from various cellulosic biomasses.  相似文献   

17.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

18.
Microbial lipids have the potential to displace terrestrial oils for fuel, value chemical, and food production, curbing the growth in tropical oil plantations and helping to reduce deforestation. However, commercialization remains elusive partly due to the lack of suitably robust organisms and their low lipid productivity. Extremely high cell densities in oleaginous cultures are needed to increase reaction rates, reduce reactor volume, and facilitate downstream processing. In this investigation, the oleaginous yeast Metschnikowia pulcherrima, a known antimicrobial producer, was cultured using four different processing strategies to achieve high cell densities and gain suitable lipid productivity. In batch mode, the yeast demonstrated lipid contents more than 40% (w/w) under high osmotic pressure. In fed-batch mode, however, high-lipid titers were prevented through inhibition above 70.0 g L−1 yeast biomass. Highly promising were a semi-continuous and continuous mode with cell recycle where cell densities of up to 122.6 g L−1 and maximum lipid production rates of 0.37 g L−1 h−1 (daily average), a nearly two-fold increase from the batch, were achieved. The findings demonstrate the importance of considering multiple fermentation modes to achieve high-density oleaginous yeast cultures generally and indicate the limitations of processing these organisms under the extreme conditions necessary for economic lipid production.  相似文献   

19.
In this study, secondary brewery wastewater (SBWW) supplemented with sugarcane molasses (SCM) was used for SBWW treatment with concomitant lipid and carotenoid production by the yeast Rhodosporidium toruloides NCYC 921. In order to improve the biomass production, ammonium sulfate, yeast extract and urea were tested as nitrogen sources. Urea was chosen as the best low-cost nitrogen source. A fed-batch cultivation was carried out with SBWW supplemented with 10 g L−1 of sugarcane molasses as carbon source, and 2 g L−1 of urea as nitrogen source. A maximum biomass concentration of 42.5 g L−1 was obtained at t = 126.5 h and the maximum biomass productivity was 0.55 g L−1 h−1 at t = 48.25 h. The maximum lipid content was 29.9 % w/w (DCW) at t = 94 h of cultivation and the maximum carotenoid content was 0.23 mg g−1 at 120 h of cultivation. Relatively to the SBWW treatment, after the batch phase, 45.8 % of total Kjeldahl nitrogen removal, 81.7 % of COD removal and 100 % of sugar consumption were observed. Flow cytometry analysis revealed that 27.27 % of the cells had injured membrane after the inoculation. This proportion was reduced to 10.37 % at the end of the cultivation, indicating that cells adapted to the growth conditions.  相似文献   

20.
The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L?1 h?1 were achieved in batch fermentation with initial sugar concentration of 55 g L?1. A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 109 CFU ml?1 was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号