首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autologous nerve grafts are the current “gold standard” for repairing large nerve gaps. However, they cause morbidity at the donor nerve site and only a limited amount of nerve can be harvested. Nerve conduits are a promising alternative to autografts and can act as guidance cues for the regenerating axons, without the need to harvest donor nerve. Separately, it has been shown that localized delivery of GDNF can enhance axon growth and motor recovery. FK506, an FDA approved small molecule, has also been shown to enhance peripheral nerve regeneration. This paper describes the design of a novel hole-based drug delivery apparatus integrated with a polytetrafluoroethylene (PTFE) nerve conduit for controlled local delivery of a protein such as GDNF or a small molecule such as FK506. The PTFE devices were tested in a diffusion chamber, and the bioactivity of the released media was evaluated by measuring neurite growth of dorsal root ganglions (DRGs) exposed to the released drugs. The drug delivering nerve guide was able to release bioactive concentrations of FK506 or GDNF. Following these tests, optimized drug releasing nerve conduits were implanted across 10 mm sciatic nerve gaps in a BL6 yellow fluorescent protein (YFP) mouse model, where they demonstrated significant improvement in muscle mass, compound muscle action potential, and axon myelination in vivo as compared with nerve conduits without the drug. The drug delivery nerve guide could release drug for extended periods of time and enhance axon growth in vitro and in vivo.  相似文献   

2.
Gold BG  Zhong YP 《Neuro-Signals》2004,13(3):122-129
The immunosuppressant drug FK506 (tacrolimus) accelerates nerve regeneration in vivo and increases neurite elongation in vitro. We have proposed that the mechanism involves binding to the FK506-binding protein 52, a chaperone component of mature steroid receptor complexes, and a subsequent 'gain-of-function' involving p23 dissociation from Hsp-90 in the complex and extracellular signal-regulated kinase (ERK) activation. Here, we tested the involvement of the ERK and p23 in neurite elongation by FK506 in human SH-SY5Y cells. FK506 (10 nM) increased ERK1/2 phosphorylation at 12 and 24 h, eliciting a 3.5-fold increase at 24 h, which was inhibited in a concentration-dependent manner by an antibody (JJ3) to recombinant human p23. Neurite elongation by FK506 (10 nM), determined by measuring neurite lengths at 96 and 168 h, was completely blocked by the mitogen-activated protein kinase inhibitor PD 098059 (10 microM) and prevented, in a concentration-dependent fashion, by the p23 antibody. Taken together, the results demonstrate the functional role for ERK and p23 in the neurite elongation activity of FK506 and reveal a novel signal transduction pathway involving p23 activation of ERK. We suggest that compounds that stimulate or mimic p23 may be useful for accelerating nerve regeneration.  相似文献   

3.
Neuregulin1 is a family of growth and differentiation factors involved in various functions of both peripheral and central nervous system including the regenerative processes that underlie regeneration of damaged peripheral nerves. In the present study we tested in vitro the effect of Neuregulin1 administration on dissociated rat dorsal root ganglion (DRG). Activity of neuregulin1 was compared to the activity of nerve growth factor in the same in vitro experimental model. Results showed that neurite outgrowth is enhanced by the addition of both neuregulin1 and nerve growth factor to the culture medium. While neuregulin1 was responsible for the growth of longer neurites, DRG neurons incubated with nerve growth factor showed shorter and more branched axons. Using enzyme-linked immunosorbent assay we also showed that the release of nerve growth factor, but not of brain derived neurotrophic factor is improved in DRG neuron treated with neuregulin1. On the other hand, the assay with growth factor blocking antibody, showed that effects exerted by neuregulin1 on neurite outgrowth is only partially due to the release of nerve growth factor. Taken together the results of this study provide a better understanding on the role of neuregulin1 in sensory neurons.  相似文献   

4.
The neurotrophins are a family of proteins that promote neuronal survival and neurite outgrowth during development and can also enhance the regeneration of injured adult neurons. The local and continuous delivery of these proteins at the site of injury is problematic, since this requires repeated intraparenchymal injections or the use of invasive canula-micropump devices. In the present study we report the generation and characterization of an adenoviral vector for a member of the neurotrophins, neurotrophin-3 (Ad-NT-3). Using Ad-NT-3, we examined the expression and biological activity of NT-3 in dorsal root ganglia (DRG) explant cultures. Gene transfer with Ad-NT-3 results in the synthesis of genuine NT-3 and in a dosage-dependent neurite outgrowth response in DRG explants. Transduction of DRG explants with a viral vector dosage of 5 × 105 to 5 × 106 plaque-forming units induced the formation of a dense halo of neurites comparable to outgrowth observed following the addition of 100 ng/mL exogenous NT-3. In addition, a single infection with Ad-NT-3 produced biologically active NT-3 for at least 20 days in culture, as evidenced by continued neurite extension. This indicates that adenoviral vector-mediated expression of NT-3 results in high-level production of biologically active NT-3 and could therefore be used as a strategy to promote the regeneration of injured peripheral and central nerve projections. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 172–184, 1997  相似文献   

5.
The FKBP-12-binding ligand FK506 has been successfully used to stimulate nerve regeneration and prevent the rejection of peripheral nerve allografts. The immunosuppressant rapamycin, another FKBP-12-binding ligand, stimulates axonal regeneration in vitro, but its influence on nerve regeneration in peripheral nerve isografts or allografts has not been studied. Sixty female inbred BALB/cJ mice were randomized into six tibial nerve transplant groups, including three isograft and three allograft (C57BL/6J) groups. Grafts were left untreated (groups I and II), treated with FK506 (groups III and IV), or treated with rapamycin (groups V and VI). Nerve regeneration was quantified in terms of histomorphometry and functional recovery, and immunosuppression was confirmed with mixed lymphocyte reactivity assays. Animals treated with FK506 and rapamycin were immunosuppressed and demonstrated significantly less immune cell proliferation relative to untreated recipient animals. Although every animal demonstrated some functional recovery during the study, animals receiving an untreated peripheral nerve allograft were slowest to recover. Isografts treated with FK506 but not rapamycin demonstrated significantly increased nerve regeneration. Nerve allografts in animals treated with FK506, and to a lesser extent rapamycin, however, both demonstrated significantly more nerve regeneration and increased nerve fiber widths relative to untreated controls. The authors suggest that rapamycin can facilitate regeneration through peripheral nerve allografts, but it is not a neuroregenerative agent in this in vivo model. Nerve regeneration in FK506-treated peripheral nerve isografts and allografts was superior to that found in rapamycin-treated animals. Rapamycin may have a role in the treatment of peripheral nerve allografts when used in combination with other medications, or in the setting of renal failure that often precludes the use of calcineurin inhibitors such as FK506.  相似文献   

6.
The purpose of the present study was to investigate whether didanosine (ddI) directly causes morphological and ultrastructural abnormalities of dorsal root ganglion (DRG) neurons in vitro. Dissociated DRG cells and organotypic DRG explants from embryonic 15-day-old Wistar rats were cultured for 3 days and then exposed to ddI (1 μg/ml, 5 μg/ml, 10 μg/ml, and 20 μg/ml) for another 3 days and 6 days, respectively. Neurons cultured continuously in medium served as normal controls. The diameter of the neuronal cell body and neurite length were measured in dissociated DRG cell cultures. Neuronal ultrastructural changes were observed in both culture models. ddI induced dose-dependent decreases in neurite number, length of the longest neurite in each neuron, and total neurite length per neuron in dissociated DRG cell cultures with 3 days treatment. There were no morphological changes seen in organotypic DRG cultures even with longer exposure time (6 days). But ddI induced ultrastructural changes in both culture models. Ultrastructural abnormalities included loss of cristae in mitochondria, clustering of microtubules and neurofilaments, accumulation of glycogen-like granules, and emergence of large dense particles between neurites or microtubules. Lysosome-like large particles emerged inconstantly in neurites. ddI induced a neurite retraction or neurite loss in a dose-dependent manner in dissociated DRG neurons, suggesting that ddI may partially contribute to developing peripheral neuropathy. Cytoskeletal rearrangement and ultrastructural abnormalities caused by ddI in both culture models may have a key role in neurite degeneration.  相似文献   

7.
Dose-dependent effects of FK506 on neuroregeneration in a rat model   总被引:6,自引:0,他引:6  
This study explored the effects of different doses of FK506 on peripheral nerve regeneration, to determine whether neuroregeneration could be enhanced without the toxicity of systemic immunosuppression. In the first part of the study, subimmunosuppressive doses of FK506 were determined by examining skin allograft survival in a rat model. Full-thickness skin grafts (2 cm2) from Wistar rats were grafted to recipient Lewis rats. The procedure was performed for six groups (n = 6). The control group received no FK506, and the other five groups received daily doses of FK506 of 0.125, 0.25, 0.5, 1.0, or 2.0 mg/kg. Animals that received 2.0 mg/kg FK506 per day exhibited complete skin graft take, whereas all other groups demonstrated complete rejection. After determination of the immunosuppressive dose of FK506, the neuroregenerative effects of different doses of FK506 were explored by assessing nerve regeneration in 80 rats after tibial nerve transection and repair. The control group received no FK506, whereas the other four groups were given daily doses of FK506 of 0.25, 0.5, 1.0, or 2.0 mg/kg. Rats were euthanized at three time points (25, 30, and 35 days), to fully investigate the effects of different FK506 dosing regimens on neuroregeneration. Histomorphometric analyses performed on postoperative days 30 and 35 demonstrated statistically significant improvements in neuroregeneration with subimmunosuppressive FK506 doses of 0.5 and 1.0 mg/kg per day. Therefore, the study demonstrated that neuroregeneration was enhanced at low doses of FK506 that were not sufficient to prevent skin allograft rejection.  相似文献   

8.
Immunophilin ligand FK506 has been treated as adjunct therapy for nerve repair due to its potent neurotrophic and neuroprotective actions. It was hypothesized that FK506 releasing from biodegradable chitosan guide provided better nerve regenerative response than the guide with no FK506. The drug was entrapped in the semi-permeable wall of chitosan guide with the drug-loading of 647 μg/g. Rat sciatic nerve defect model treated with FK506-releasing chitosan guide showed more mature appearance of myelinated fibers 8 weeks after surgery; furthermore, the motor functional reinnervation occurred, the amplitude and velocity of compound muscle action potentials reached 60% and 73% with respect to the normal. Thus, FK506-releasing chitosan guide should be acted as a long-lasting delivery device of immunosuppressive and neuroregenerative agent for peripheral nerve repair.  相似文献   

9.
During the continuous culturing of neural PC12 cells, a drug hypersensitive PC12 mutant cell line (PC12m3) was obtained, which demonstrated high neurite outgrowth when stimulated by various drugs. When the immunosuppressant drug FK506 and nerve growth factor (NGF) were introduced to the PC12m3 cells, the frequency of neurite outgrowth increased approximately 40-fold for NGF alone. However, the effect of FK506 on neuritogenesis in PC12 parental and drug insensitive PC12m1 mutant cells was much lower than in PC12m3 cells. The sustained activation of mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth of PC12 cells. Interestingly, the drug hypersensitive PC12m3 cells exhibited the sustained activation of MAP kinase with FK506 in comparison to low or no activities in PC12 parental or drug insensitive PC12m1 cells. These results indicate that PC12m3 cells have a novel FK506-induced MAP kinase pathway for neuritogenesis.  相似文献   

10.
Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration.  相似文献   

11.
We previously demonstrated that FK506, a generally applied immunosuppressant in organ transplantation, could promote peripheral nerve regeneration through reducing scar formation. However, little is known about how FK506 reduces scar formation. Herein we investigated the influence of FK506 on fibroblast proliferation and its correlation with scar formation after sciatic nerve injury in rats, and further explored the effect of FK506 on fibroblast proliferation and apoptosis in vitro. Masson staining and immunohistochemistry revealed that scar area and fibroblast number in the nerve anastomosis of sciatic nerve-injured rats were significantly reduced after FK506 administration. The scar area had a significant positive correlation with the fibroblast number, as detected by linear correlation analysis. CCK-8 assay and flow cytometry indicated that FK506 also inhibited proliferation and induced apoptosis of fibroblasts in vitro. It was primarily phosphorylation of JNK and ERK that were activated during the apoptosis of fibroblast. Pretreatment of cells with JNK inhibitor, SP600125, or ERK inhibitor, PD98059, could inhibit FK506-induced fibroblast apoptosis, respectively. Moreover, simultaneous application of both inhibitors had additive roles in cell protection from apoptosis. These results suggest that FK506-induced fibroblast apoptosis contributes to the suppression of fibroblast proliferation and then results in the reduction of scar formation in sciatic nerve-injured rat, and that JNK and ERK are involved in FK506-induced fibroblast apoptosis.  相似文献   

12.
13.
We used compartmented cultures to study the regulation of adult sensory neurite growth by neurotrophins. We examined the effects of the neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT3), and BDNF on distal neurite elongation from adult rat dorsal root ganglion (DRG) neurons. Neurons were plated in the center compartments of three-chambered dishes in the absence of neurotrophin, and neurite extension into the distal (side) compartments containing NGF, BDNF, or NT3 was quantitated. Initial proximal neurite growth did not require any of the neurotrophins, while subsequent elongation into distal compartments required NGF. After neurites had extended into NGF-containing distal compartments, removal of NGF by treatment with anti-NGF resulted in the cessation of growth with minimal neurite retraction. In contrast to the effects of NGF, no distal neurite elongation was observed into compartments with BDNF or NT3. To examine possible additive influences, neurite extension into compartments containing BDNF plus NGF or NT3 plus NGF was quantitated. There was no increased neurite extension into NGF plus NT3 compartments, while the combination of BDNF plus NGF resulted in an inhibition of neurite extension compared with NGF alone. We then investigated whether the regrowth of neurites that had originally grown into NGF subsequent to in vitro axotomy still required NGF. The results demonstrated that unlike adult sensory nerve regeneration in vivo, the in vitro regrowth did require NGF, and neither BDNF nor NT3 was able to substitute for NGF. Since the initial growth from neurons after dissociation (which is also a regenerative response) did not require NGF, it would appear that neuritic growth and regrowth of adult DRG neurons in vitro includes both NGF-independent and NGF-dependent components. The compartmented culture system provides a unique model to further study aspects of this differential regulation of neurite growth. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 395–410, 1997  相似文献   

14.
The sometimes dramatic and permanent functional deficits that result from severe peripheral nerve injuries provide compelling incentives to identify exogenous agents that may expedite axonal regrowth and avoid prolonged denervation of end organs. The purpose of this study was to identify, whether the regular systemic administration of tacrolimus (FK506) or cyclosporin A (CsA) would influence the speed and efficiency of nerve regeneration through short nerve grafts. A total of 35 Buffalo rats each received a 2-cm posterior tibial nerve graft and were randomized to one of three experimental groups. Group I animals were left untreated, group II received daily CsA (5 mg/kg intraperitoneally), and group III received daily FK506 (1 mg/kg intraperitoneally). Walking tracks were obtained starting 3 weeks after graft placement and continuing biweekly for the next 7 weeks. FK506-treated animals fully recovered hindlimb function 7 days earlier than CsA-treated animals or untreated control animals. Regenerated nerves from one-half of each treatment group were harvested for histomorphometric analysis at 7 weeks, shortly after recovery was complete in the FK506-treatment group but not in the other two groups, and once again at 10.5 weeks when recovery of function had stabilized in all groups. At 7 weeks, FK506-treated animals had significantly greater fiber density and percentage of neural tissue per nerve and a significantly larger population of mature, myelinated fibers in comparison with either CsA-treated or untreated animals. The authors concluded that the daily, systemic administration of low-dose FK506 facilitates peripheral nerve recovery and regeneration after nerve grafting.  相似文献   

15.
There is now considerable evidence of the importance of mechanical cues in neuronal development and regeneration. Motivated by the difference in the mechanical properties of the tissue environment between the peripheral (PNS) and central (CNS) nervous systems, we compare substrate-stiffness-dependent outgrowth and traction forces from PNS (dorsal root ganglion (DRG)) and CNS (hippocampal) neurons. We show that neurites from DRG neurons display maximal outgrowth on substrates with a Young's modulus of ~1000 Pa, whereas hippocampal neurite outgrowth is independent of substrate stiffness. Using traction force microscopy, we also find a substantial difference in growth cone traction force generation, with DRG growth cones exerting severalfold larger forces compared with hippocampal growth cones. The traction forces generated by DRG and hippocampal growth cones both increase with increasing stiffness, and DRG growth cones growing on substrates with a Young's modulus of 1000 Pa strengthen considerably after 18–30 h. Finally, we find that retrograde actin flow is almost three times faster in hippocampal growth cones than in DRG. Moreover, the density of paxillin puncta is significantly lower in hippocampal growth cones, suggesting that stronger substrate coupling of the DRG cytoskeleton is responsible for the remarkable difference in traction force generation. These findings reveal a differential adaptation of cytoskeletal dynamics to substrate stiffness in growth cones of different neuronal types, and highlight the potential importance of the mechanical properties of the cellular environment for neuronal navigation during embryonic development and nerve regeneration.  相似文献   

16.

Background

In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model.

Methods

A sciatic nerve was harvested from a male beagle dog, divided into fascicules of < 1.5 mm diameter, and stored in a polyphenol solution (1 mg/ml) for one month at 4°C. The nerve fascicles were transplanted into 10 female beagle dogs to bridge 3-cm right ulnar nerve gaps. In the left ulnar nerve in each dog, a 3-cm nerve segment was harvested, turned in the opposite direction, and sutured in situ. Starting one day before transplantation, the immunosuppressant FK506 was administered subcutaneously at doses of 0.1 mg/kg daily in four dogs (PA0.1 group), 0.05 mg/kg daily in four dogs (PA0.05 group), or 0.05 mg/kg every other day in two dogs (PA0.025 group). Twelve weeks after surgery, electrophysiological and morphological studies were performed to assess the regeneration of the right and left ulnar nerves. The data for the right ulnar nerve were expressed as percentages relative to the left ulnar nerve. Polymerase chain reaction (PCR) was used to identify the sex-determining region of the Y-chromosome (Sry) and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed.

Results

The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group.

Conclusions

Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.  相似文献   

17.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   

18.
FK506 is an efficient immunosuppressive agent with an increasing number of clinical applications. It has been approved to prevent rejection in transplant patients and be efficacious in several autoimmune diseases. Its immunosuppressive activity results from binding to receptor proteins designated as immunophilins (i.e., FKBP12, FK506 binding protein). Recent studies have suggested that FK506 can promote neurite outgrowth as a 2nd activity. Furthermore, it has been shown that the neurotrophic property of FK506 is independent of its immunosuppressive action. Although the mechanism of its neurotrophic activity has not yet been well elucidated, FKBP12 is identified as a drug target, and much effort has been directed toward the design of FKBP12-binding molecules, which are neurotrophic but non-immunosuppressive, for clinical use. In this present study, the authors constructed a stable cell line, which underwent apoptosis upon treatment by AP20187, a wholly synthesized, cell-permeable dimeric FK506 derivative, based on FKBP12-mBax dimerization. This AP20187-mediated apoptosis was rapidly reversed by the addition of an FKBP12-binding competitor molecule (FK506 or rapamycin), indicating that this cell line might be used to screen FK506 derivatives. Using the screening model, hundreds of synthetic FK506 analogs were analyzed. A promising compound, named N308, was obtained. The results showed that N308 could inhibit AP20187-induced gene-modified target cell apoptosis and elicit augmentation of neurite extension from both cultured PC-12 cells and chicken dorsal root ganglia cultures.  相似文献   

19.
The transplantation of Schwann cells (SCs) could successfully promote axonal regeneration. This is likely to attribute to the adhesion molecules expression and growth factors secretion of SCs. But which factor(s) play a key role has not been precisely studied. In this study, an outgrowth assay using dorsal root ganglia (DRG) neuron-SC co-culture system in vitro was performed. Co-culture of SCs or application of SC-conditioned medium (CM) substantially and significantly increased DRG neurite outgrowth. Further, nerve growth factor and NGF receptor (TrkA) mRNA were highly expressed in Schwann cells and DRG neuron, respectively. The high concentration of NGF protein was detected in SC-CM. When K-252a, a specific inhibitor of NGF receptor was added, DRG neurite outgrowth was significantly decreased in a concentration-dependent manner. These data strongly suggest that SCs play important roles in neurite outgrowth of DRG neurons by secreted NGF.  相似文献   

20.
In animal models, transplantation of bone marrow stromal cells (MSC) into the spinal cord following injury enhances axonal regeneration and promotes functional recovery. How these improvements come about is currently unclear. We have examined the interaction of MSC with neurons, using an established in vitro model of nerve growth, in the presence of substrate-bound extracellular molecules that are thought to inhibit axonal regeneration, i.e., neural proteoglycans (CSPG), myelin associated glycoprotein (MAG) and Nogo-A. Each of these molecules repelled neurite outgrowth from dorsal root ganglia (DRG) in a concentration-dependent manner. However, these nerve-inhibitory effects were much reduced in MSC/DRG co-cultures. Video microscopy demonstrated that MSC acted as “cellular bridges” and also “towed” neurites over the nerve-inhibitory substrates. Whereas conditioned medium from MSC cultures stimulated DRG neurite outgrowth over type I collagen, it did not promote outgrowth over CSPG, MAG or Nogo-A. These findings suggest that MSC transplantation may promote axonal regeneration both by stimulating nerve growth via secreted factors and also by reducing the nerve-inhibitory effects of the extracellular molecules present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号