首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人类诱导多能干细胞(induced pluripotent stem cells,iPS细胞)的建立被公认为目前最重要的科技进展之一。iPS细胞在动物疾病模型上的成功治疗,病患特异性iPS细胞的研究及iPS细胞的定向分化研究将有可能使人们避开治疗性克隆的伦理和技术障碍,给人类疾病的干细胞治疗带来光明的前景。本文从iPS细胞的诱导策略和方法,来源细胞及筛选、重编程机制的研究现状、应用前景以及研究中存在的问题等方面对其作一综述和讨论。  相似文献   

2.
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.  相似文献   

3.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

4.
The therapeutic potential of human pluripotent stem (hPS) cells is threatened, among various problems, by the difficulty to homogenously direct cell differentiation into specific lineages. The transition from hPSC into committed differentiated cells is accompanied by secretome activity, remodeling of extracellular matrix and self‐organization into germ layers. In this work, we aimed to investigate how different three‐dimensional microenvironments regulate the early differentiation of the three germ layers in human embryonic stem (hES) cells derived embryoid bodies. In particular, a permeable, biocompatible, hydrogel microwell array was specifically designed for recreating a confined niche in which EB secreted molecules accumulate in accordance with hydrogel diffusional cut‐off. Fluorescence recovery after photobleaching technique was performed to accurately evaluate hydrogel permeability, mesh size and diffusional cutoff for soluble molecules. Three different culture conditions of EB culture were analyzed: suspension, confinement in microwells of width/depth ratio 1:1 and 1:2. Results show that EBs cultured in microwells are viable and have comparable average size after 8 days culture. Whole genome microarrays show that significative differential gene expression was observed between suspension and confined EBs culture. In particular, EBs culture in microwells promotes the expression of genes involved in pattern specification processes, brain development, ectoderm and endoderm differentiation. On the contrary, suspension EBs express instead genes involved in mesoderm specification and heart development. These results suggest that local accumulation of EBs secreted molecules drives differentiation patterns, as confirmed by immunofluorescence of germ layer markers, in hydrogel confined EB culture from both hES cells and human induced pluripotent stem (hiPS) cells. Our findings highlight an additional potential role of biomaterial in controlling hPSC differentiation through secreted factor niche specification. Biotechnol. Bioeng. 2012; 109: 3119–3132. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
Considering that the common osteogenic growth factors cannot be transplanted with stem cells to the patients, many studies are underway to find a replacement for these factors. Recently, it has been determined that mesenchymal stem cell (MSC)-derived conditioned medium (CM) contains effective factors in the bone formation process. In the current study, the synergistic effect of adipose-derived MSC’s CM, and polycaprolactone (PCL) scaffold was investigated on the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs). After scaffold fabrication by electrospinning and characterization by scanning electron microscopy, iPSCs proliferation in the presence of CM, PCL, and both was evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide. Then, iPSCs osteogenic differentiation was investigated while cultured on tissue culture plate and PCL under CM compared with the osteogenic medium using alizarin red staining, calcium content, alkaline phosphatase activity and gene and protein expression analysis. Proliferation rate of the iPSCs was increased while cultured under CM and its effect was synergistically enhanced by culture on PCL. Evaluation of the osteogenic markers was showed CM alone could induce osteogenic differentiation into the iPSCs and this potential was significantly increased while combined with PCL nanofibrous scaffold. According to the results, it was demonstrated that CM has an osteogenic induction property almost the same of the common osteogenic medium and it can also be used potentially with stem cells when transplant to the patients. CM can also help by prolonging cell survival at the site of the defect as well as accelerating healing process.  相似文献   

7.
吴昭  成璐  肖磊 《生命科学》2009,(5):658-662
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。  相似文献   

8.

Background aims

Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.

Methods

We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.

Results

We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.

Conclusions

3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver.  相似文献   

9.
Yan YB  Zhang YL  Qi WW  Wan YJ  Fan YX  Wang F 《遗传》2011,33(4):307-313
猪作为实验材料,具有由于来源方便、基因序列与人类的相近及其在畜牧业中的重要地位等优势,成为国内外研究的热点,但是猪的胚胎干细胞(Embryonic stem cells,ESC)建系方面的研究进展缓慢。诱导性多能干细胞(induced pluripotent stem cells,iPSC)技术的诞生,开创了体细胞重编程的全新方法。猪iPSC体系的建立将为家畜ESC体系的建立奠定基础,同时也对提高猪转基因克隆的效率,高效育种和保种,乃至生物医学领域均产生深远的影响。文章综述了iPSC技术的主要进展,重点阐述了猪iPSC技术的现状及其在生物医学和畜牧业中的应用前景,以期为从事该领域研究的科研人员提供参考。  相似文献   

10.
With their capability to undergo unlimited self-renewal and to differentiate into all cell types in the body, induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of human patients with defined factors, hold promise for regenerative medicine because they can provide a renewable source of autologous cells for cell therapy without the concern for immune rejection. In addition, iPSCs provide a unique opportunity to model human diseases with complex genetic traits, and a panel of human diseases have been successfully modeled in vitro by patient-specific iPSCs. Despite these progresses, recent studies have raised the concern for genetic and epigenetic abnormalities of iPSCs that could contribute to the immunogenicity of some cells differentiated from iPSCs. The oncogenic potential of iPSCs is further underscored by the findings that the critical tumor suppressor p53, known as the guardian of the genome, suppresses induced pluripotency. Therefore, the clinic application of iPSCs will require the optimization of the reprogramming technology to minimize the genetic and epigenetic abnormalities associated with induced pluripotency.  相似文献   

11.
Induced pluripotent stem (iPS) cells have potential to differentiate into T lymphocytes, however, the actual ability of iPS cells to develop into T lineages is not clear. In this study, we co-cultured iPS cells on OP9 cells expressing the Notch ligand Delta-like 1 (DL1), the iPS cells differentiated into T lymphocytes. In addition, in vitro stimulation of iPS cell-derived T lymphocytes resulted in secretion of IL-2 and IFN-γ. Moreover, adoptive transfer of iPS cell-derived T lymphocytes into Rag-deficient mice reconstituted their T cell pools. These results indicate that iPS cells are able to follow the normal program of T cell differentiation.  相似文献   

12.
‘Requirements for Human‐Induced Pluripotent Stem Cells’ is the first set of guidelines on human‐induced pluripotent stem cells in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the technical requirements, test methods, and instructions for use, labeling, packaging, storage, transportation, and waste handling for human‐induced pluripotent stem cells, which apply to the production and quality control of human‐induced pluripotent stem cells. It was released by the Chinese Society for Cell Biology on 9 January 2021 and came into effect on 9 April 2021. We hope that the publication of these guidelines will promote institutional establishment, acceptance, and execution of proper protocols and accelerate the international standardization of human‐induced pluripotent stem cells for applications.  相似文献   

13.
14.
Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation.  相似文献   

15.
Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis by producing excessive extracellular matrix (ECM) following chronic inflammation. However, studying HSC function has been challenging due to the limited availability of primary human quiescent HSCs (qHSCs) in vitro, and the fact that primary qHSCs quickly activate when cultured on plastic plates. Advances in stem cell technology have allowed for the generation of qHSCs from human induced pluripotent stem cells (hiPSCs) with the potential to provide an unlimited source of cells. However, differentiated quiescent-like HSCs (iqHSCs) also activate spontaneously on conventional plastic plates. In this study, we generated iqHSCs from hiPSCs and developed a culture method to maintain such iqHSCs in a lowly activated state for up to 5 days by optimizing their physical culture microenvironment. We observed that three-dimensional (3D) culture of iqHSCs in soft type 1 collagen hydrogels significantly inhibited their spontaneous activation in vitro while maintaining their ability to convert to activated state. Activation of iqHSC was successfully modeled by stimulating them with the fibrotic cytokine TGFβ1. Hence, our culture method can be used to generate HSCs with functions comparable to those in a healthy liver, facilitating the development of accurate in vitro liver models for identifying novel therapeutic agents.  相似文献   

16.
17.
18.
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs.  相似文献   

19.
Reprograming somatic cells using exogenetic gene expression represents a groundbreaking step in regenerative medicine. Induced pluripotent stem cells(i PSCs) are expected to yield novel therapies with the potential to solve many issues involving incurable diseases. In particular, applying i PSCs clinically holds the promise of addressing the problems of immune rejection and ethics that have hampered the clinical applications of embryonic stem cells. However, as i PSC research has progressed, new problems have emerged that need to be solved before the routine clinical application of i PSCs can become established. In this review, we discuss the current technologies and future problems of human i PSC generation methods for clinical use.  相似文献   

20.
小鼠的成纤维细胞通过转染四种转录因子(Oct3/4、Sox2、c-Myc和K1F4)可以被诱导转变成类似胚胎干细胞的多能性干细胞,称之为诱导型多能干细胞(induced pluripotent stem cell,iPS),这种多能干细胞在细胞形态、增殖速率、致瘤性、基因表达以及形成嵌合小鼠的能力上与胚胎干细胞有许多相似之处,将来可能成为胚胎干细胞在临床应用中的替代。本文综述了iPS相关的几种转录因子,及其在重编程过程中的作用以及iPS的发展前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号