首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil cakes and their biotechnological applications--a review   总被引:1,自引:0,他引:1  
Oil cakes have been in use for feed applications to poultry, fish and swine industry. Being rich in protein, some of these have also been considered ideal for food supplementation. However, with increasing emphasis on cost reduction of industrial processes and value addition to agro-industrial residues, oil cakes could be ideal source of proteinaceous nutrients and as support matrix for various biotechnological processes. Several oil cakes, in particular edible oil cakes offer potential benefits when utilized as substrate for bioprocesses. These have been utilized for fermentative production of enzymes, antibiotics, mushrooms, etc. Biotechnological applications of oil cakes also include their usages for vitamins and antioxidants production. This review discusses various applications of oil cakes in fermentation and biotechnological processes, their value addition by implementation in feed and energy source (for the production of biogas, bio-oil) as well.  相似文献   

2.
In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental pollution and reduce dependency on fossil fuels. There are two major biological processes that can convert biomass to liquid energy carriers via anaerobic biological breakdown of organic matter: ethanol fermentation and mixed acetone, butanol, ethanol (ABE) fermentation. The specific product formation is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account the microbiology and biochemistry of the processes.  相似文献   

3.
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.  相似文献   

4.
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.  相似文献   

5.
Liquid and gaseous fuels from biotechnology: challenge and opportunities   总被引:3,自引:0,他引:3  
Abstract: This paper presents challenging opportunities for production of liquid and gaseous fuels by biotechnology. From the liquid fuels, ethyl alcohol production has been widely researched and implemented. The major obstacle for large scale production of ethanol for fuel is the cost, whereby the substrate represents one of the major cost components. Various scenarios will be presented for a critical assessment of cost distribution for production of ethanol from various substrates by conventional and high rate processes. The paper also focuses on recent advances in the research and application of biotechnological processes and methods for the production of liquid transportation fuels other than ethanol (other oxygenates; diesel fuel extenders and substitutes), as well as gaseous fuels (biogas, methane, reformed syngas). Potential uses of these biofuels are described, along with environmental concerns which accompany them. Emphasis is also put on microalgal lipids as diesel substitute and biogas/methane as a renewable alternative to natural gas. The capturing and use of landfill gases is also mentioned, as well as microbial coal liquefaction. Described is also the construction and performance of microbial fuel cells for the direct high-efficiency conversion of chemical fuel energy to electricity. Bacterial carbon dioxide recovery is briefly dealt with as an environmental issue associated with the use of fossil energy.  相似文献   

6.

Fungi constitute an invaluable natural resource for scientific research, owing to their diversity; they offer a promising alternative for bioprospecting, thus contributing to biotechnological advances. For a long time, extensive information has been exploited and fungal products have been tested as a source of natural compounds. In this context, enzyme production remains a field of interest, since it offers an efficient alternative to the hazardous processes of chemical transformations. Owing to their vast biodiversity and peculiar biochemical characteristics, two fungal categories, white-rot and anaerobic Neocallimastigomycota, have gathered considerable attention for biotechnological applications. These fungi are known for their ability to depolymerize complex molecular structures and are used in degradation of lignocellulosic biomass, improvement of animal feed digestibility, biogas and bioethanol production, and various other applications. However, there are only limited reports that describe proteolytic enzymes and esterases in these fungi and their synergistic action with lignocellulolytic enzymes on degradation of complex polymers. Thus, in this minireview, we focus on the importance of these organisms in enzyme technology, their bioprospecting, possibility of integration of their enzyme repertoire, and their prospects for future biotechnological innovation.

  相似文献   

7.
Gao C  Ma C  Xu P 《Biotechnology advances》2011,29(6):6398-939
Lactic acid, the most important hydroxycarboxylic acid, is now commercially produced by the fermentation of sugars present in biomass. In addition to its use in the synthesis of biodegradable polymers, lactic acid can be regarded as a feedstock for the green chemistry of the future. Different potentially useful chemicals such as pyruvic acid, acrylic acid, 1,2-propanediol, and lactate ester can be produced from lactic acid via chemical and biotechnological routes. Here, we reviewed the current status of the production of potentially valuable chemicals from lactic acid via biotechnological routes. Although some of the reactions described in this review article are still not applicable at current stage, due to their “greener” properties, biotechnological processes for the production of lactic acid derivatives might replace the chemical routes in the future.  相似文献   

8.
Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological processes for production of bulk and fine chemicals or in biological treatment of waste streams. Synthesis gas produced from fossil fuels or biomass is rich in hydrogen and carbon monoxide. Conversion of carbon monoxide to hydrogen allows use of synthesis gas in existing hydrogen utilizing processes and is interesting in view of a transition from hydrogen production from fossil fuels to sustainable (CO2-neutral) biomass. The conversion of CO with H2O to CO2 and H2 is catalyzed by a rapidly increasing group of micro-organisms. Hydrogen is a preferred electron donor in biotechnological desulfurization ofwastewaters and flue gases. Additionally, CO is a good alternative electron donor considering the recent isolation of a CO oxidizing, sulfate reducing bacterium. Here we review CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization.  相似文献   

9.
Population interactions among mosquitoes in the Culex vishnui subgroup, which are vectors of Japanese Encephalitis, and their natural enemies were studied in Pondicherry, India. We tested the hypothesis that the breakdown of interactions between the larvae and their natural enemies due to drought followed by rain was responsible for the sudden increase in the vector population above the threshold for disease transmission during the heavy rainy period. We randomly sampled mosquito larvae and their predators in different breeding habitats and subjected the mean densities of prey, predator, and mosquito larvae infected with parasites/pathogens to covariate analysis to understand the interaction between prey and their natural enemies in relation to environmental factors. In rice fields, neither prey nor predator showed any positive correlation with temperature, RH, or the number of rainy days. However, the pathogen/parasite of mosquito immatures showed a positive correlation with RH. Among the mosquito predators, notonectids exhibited a significant positive correlation with Cx. vishnui larvae. The parasitic Romanomermis iyengari and pathogenic Coelomomyces anopheliscus also showed positive correlations with immatures. No parasites and pathogens of mosquito larvae were recorded in shallow water pools (SWP) or cement tanks (CT) during the study period. Important predators recorded in SWP were notonectids, damselfly nymphs, Diplonychus indicus, and hydrophilids. Dragonfly nymphs, gerrids, and tadpole shrimps were recorded in CT. In CT, prey and their predators were positively correlated with RH and rainy days. In SWP, there was a highly significant correlation between prey, predators and environmental factors. We conclude that rice fields are a stable ecosystem where regular interaction occurs between larvae and their natural enemies and a sudden increase in mosquito populations is uncommon. In transient habitats, no such stability is present and they become more important as breeding habitats in terms of seasonality and number. Shallow water pools should be seriously considered for the control of these vectors.  相似文献   

10.
Transport processes play a pivotal role in cellular metabolism, e.g. for the uptake of nutrients or the excretion of metabolic waste products. Moreover, they are also important in biotechnological processes such as the production of various amino acids by the use of microorganisms. The focus of this review is on bacterial amino acid transport systems, in particular those of Corynebacterium glutamicum and Escherichia coli, with respect to their function and biotechnological significance.  相似文献   

11.
The presented article highlights the process of biofuel production with a special focus on bioethanol. After a short introduction to the “problems” of biofuels – the “first generation” biofuels (in regards to their competition to feed and food production) and the “second generation” biofuels (in regards to the required more complex process technology) − the different steps in the process from natural resources towards the final product are presented and the underlying biotechnological challenges discussed: the pre-treatment of the natural resources followed by the biotechnological processes of hydrolysis and fermentation. Topics such as enzyme screening for efficient or even multi-step hydrolysis as well as microbial strain selection under process conditions and the optimization of the anaerobic fermentative conversion of the saccharides to bioethanol are discussed. Optimizing the production of bioethanol to be competitive with petrochemical fuels is the main challenge for the underlying process development.  相似文献   

12.
Nowadays, food, cosmetic, environmental and pharmaceutical fields are searching for alternative processes to obtain their major products in a more sustainable way. This fact is related to the increasing demand from the consumer market for natural products to substitute synthetic additives. Industrial biotechnology appears as a promising area for this purpose; however, the success of its application is highly dependent of the availability of a suitable microorganism. To overcome this drawback, the isolation of microorganisms from diverse sources, including fermented food, adverse environments, contaminated samples or agro-industrial wastes is an important approach that can provide a more adaptable strain able to be used as biocatalyst and that exhibit resistance to industrial conditions and high yields/productivities in biotechnological production of natural compounds. The aim of this review is to provide a solid set of information on the state of the art of isolation and screening studies for obtaining novel biocatalysts able to produce natural compounds, focusing in aromas, biosurfactants, polysaccharides and microbial oils.  相似文献   

13.
Production of chondroitin sulfate and chondroitin   总被引:2,自引:0,他引:2  
The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial biotechnological approaches.  相似文献   

14.
Biotransformation of halogenated compounds   总被引:7,自引:0,他引:7  
As a result of natural production and contamination of the environment by xenobiotic compounds, halogenated substances are widely distributed in the biosphere. Concern arises as a result of the toxic, carcinogenic, and potential teratogenic nature of these substances. The biotransformations of such halogenated substances are reviewed, with particular emphasis on the biocatalytic cleavage of the carbon-halogen bonds. The physiology, biochemistry, and genetics of the biological system involved in the dehalogenation reactions are discussed for three groups of organohalogens: (1) the haloacids, (2) the haloaromatics, and (3) the haloalkanes. Finally, the biotechnological applications of these microbial transformations are discussed. This includes prospects for their future application in biosynthetic processes for the synthesis of halogenated intermediates or novel compounds and also the use of such systems for the detoxification and degradation of environmental pollutants.  相似文献   

15.
The production of ethanol for the energy market has traditionally been from corn and sugar cane biomass. The use of such biomass as energy feedstocks has recently been criticised as ill-fated due to competitive threat against food supplies. At the same time, ethanol production from cellulosic biomass is becoming increasingly popular. In this paper, we analyse rice husk (RH) as a cellulosic feedstock for ethanol biofuel production on the ground of its abundance. The global potential production of bioethanol from RH is estimated herein and found to be in the order of 20.9 to 24.3 GL per annum, potentially satisfying around one fifth of the global ethanol biofuel demand for a 10% gasohol fuel blend. Furthermore, we show that this is especially advantageous for Asia, in particular, India and China, where economic growth and demand for energy are exploding.  相似文献   

16.
During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.  相似文献   

17.
破囊壶菌由于具备生产多种高值天然活性物质的能力,如二十碳五烯酸(eicosapentaenoic acid, EPA)、二十二碳六烯酸(docosahexaenoic acid, DHA)、角鲨烯和类胡萝卜素等,目前已被视为商业脂质生产的优质来源。本文首先对破囊壶菌的生态作用和生物技术价值进行介绍,并概述了脂肪酸的两条生物合成途径;其次重点阐述了NaCl、温度、溶氧和pH这4种环境胁迫因子对破囊壶菌生长、脂质积累、脂肪酸组成和DHA生产的影响;随后总结了当前利用环境胁迫因子的渗透调节策略、分段发酵策略和缓解氧化应激策略提升破囊壶菌DHA生物合成能力的研究现状;最后指出了破囊壶菌在环境胁迫的分子调控机制、分段式发酵策略、菌株进化及代谢工程等方面存在的问题,并对如何改进这些问题以及未来可能的发展方向进行了展望。该综述旨在为破囊壶菌实现高效工业化生产DHA提供有效的参考。  相似文献   

18.
Abstract

In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.  相似文献   

19.
Interest in alternative fuel sources has grown in recent years in response to a confluence of factors, including concerns over our reliance on and increasing demand for fossil fuels as well as the deleterious environmental effects of fossil fuel extraction and utilization. The use of microbe-derived fuel alcohols is a viable alternative, as they are renewable, emit fewer greenhouse gasses, and require little augmentation of current energy infrastructure as compared to other sustainable transportation options such as electric vehicles and fuel cells. Here, we present a brief overview of candidate substrates for alcohol production with a focus on lignocellulosic sources, relevant microorganisms under research for industrialization and the biotechnological techniques used to improve alcohol production phenotypes.  相似文献   

20.
The current interest in microalgae as a sustainable source of next generation biofuels and other valuable substances is driving exploration of their use as unique biotechnological production systems. To design and optimise appropriate production strategies, the behaviour of particular microalgal species should be well characterised under different culture conditions. Thus, flow cytometric (FCM) methods, which are already well established in environmental and toxicological studies of microalgae, are also useful for analysing the physiological state of microalgae, and have the potential to contribute to the rapid development of feasible bioprocesses. These methods are commonly based on the examination of intrinsic features of individual cells within a population (such as autofluorescence or size). Cells possessing the desired physiological or morphological features, which are detectable with or without fluorescent staining, are counted or isolated (sorted) using an FCM device. The options for implementation of FCM in the development of biotechnological processes detailed in this review are (i) analysing the chemical composition of biomass, (ii) monitoring cellular enzyme activity and cell viability, and (iii) sorting cells to isolate those overproducing the target compound or for the preparation of axenic cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号