首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host cell proteins (HCPs) are considered a critical quality attribute and are linked to safety and efficacy of biotherapeutic products. Researchers have identified 10 HCPs in Chinese hamster ovary (CHO) that exhibit common characteristics of product association, coelution, and age-dependent expression and therefore are “difficult to remove” during downstream purification. These include cathepsin D, clusterin, galectin-3-binding protein, G-protein coupled receptor 56, lipoprotein lipase, metalloproteinase inhibitor, nidogen-1 secreted protein acidic and rich in cysteine (SPARC), sulfated glycoprotein, and insulin-like growth factor-2 RNA-binding protein. While the levels of HCPs in the investigated biosimilars were within the acceptable range of <100 ppm, certain “difficult to remove” HCPs were found in the biosimilar samples. This article aims to elucidate the underlying interactions between these “difficult to remove” HCPs and the mAb product. Surface study of rituximab exhibited unstable discontinuous patches of residues on the protein surface that have high propensity to get buried and lower the solvent exposed area. The higher order structure and the receptor binding were not affected, except for one of the biosimilars, owing to extremely low-HCP levels in its final drug product. Finally, based on the combined experimental and computational data from this study, a probable mechanism of retention for the 10 HCPs is proposed. The results presented here can guide downstream process design or avenues for protein engineering during product discovery to achieve more effective removal of the impurities.  相似文献   

2.
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

3.
《MABS-AUSTIN》2013,5(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ~10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

4.
蛋白质的空间结构信息以及蛋白质间的相互作用信息对于研究蛋白质的功能有重要意义.研究蛋白质结构与相互作用的传统技术,如核磁共振技术、X射线晶体衍射技术等,对于蛋白质的纯度、结晶性和绝对量均有比较高的要求,限制了其广泛应用.交联质谱技术是近十多年来发展起来的新技术,它将质谱技术与交联技术相结合,在研究蛋白质结构与相互作用方面具有速度快、成本小、蛋白质各方面性状要求低等优势.本文就交联质谱技术各个环节的技术方法加以综述,包括交联质谱实验分离富集技术、常见交联剂特性、交联质谱数据库搜索算法、结果验证研究和交联质谱技术的应用等方面,并展望了该研究方向未来的发展.  相似文献   

5.
6.
化学交联质谱技术是解析蛋白质结构和研究蛋白质相互作用的重要工具。近5年以来,该技术在方法和应用上都取得了很大的进步。方法上,一方面可断裂交联剂与新型分离富集方法展现了较好的应用前景,另一方面更加高效的交联肽段搜索引擎和质量控制方法为交联质谱数据分析提供了有力的工具。应用上,一方面与冷冻电镜技术结合解析了大量蛋白质的结构,另一方面从研究蛋白质复合物的相互作用发展到研究全蛋白质组水平的相互作用网络。化学交联质谱技术在方法和应用上的蓬勃发展,体现了这一技术的重要作用。本文对化学交联质谱技术的各个环节进行了详细的综述,包括交联剂选择、交联反应、酶切、交联肽段富集、液质联用、交联肽段鉴定、质量控制和生物学应用,重点介绍了最近5年的研究进展。最后,讨论了化学交联质谱技术面临的挑战及未来的发展方向。  相似文献   

7.
Protein A chromatography is commonly used as the initial step for purifying monoclonal antibody biotherapeutics expressed in mammalian tissue culture cells. The purpose of this step, as well as later chromatography steps, is, in part, to remove host cell proteins (HCPs) and other related impurities. Understanding the retention mechanism for the subset of HCPs retained during this step is of great interest to monoclonal antibody (mAb) process developers because it allows formation of a guided HCP clearance strategy. However, only limited information is available about the specific HCPs that co‐purify with mAbs at this step. In this study, a comprehensive comparison of HCP subpopulations that associated with 15 different mAbs during protein A chromatography was conducted by a 2D‐LC‐HDMSE approach. We found that a majority of CHO HCPs binding to and eluting with the mAbs were common among the mAbs studied, with only a small percentage (~10% on average) of a mAb's total HCP content in the protein A (PrA) eluate specific for a particular antibody. The abundance of these HCPs in cell culture fluids and their ability to interact with mAbs were the two main factors determining their prevalence in protein A eluates. Potential binding segments for HCPs to associate with mAbs were also studied through their co‐purification with individual Fc and (Fab′)2 antibody fragments. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:708–717, 2016  相似文献   

8.
9.
Monitoring host cell proteins (HCPs) is one of the most important analytical requirements in production of recombinant biopharmaceuticals to ensure product purity and patient safety. Enzyme-linked immunosorbent assay (ELISA) is the standard method for monitoring HCP clearance. It is important to validate that the critical reagent of an ELISA, the HCP antibody, covers a broad spectrum of the HCPs potentially present in the purified drug substance. Current coverage methods for assessing HCP antibody coverage are based on 2D-Western blot or immunoaffinity-purification combined with 2D gel electrophoresis and have several limitations. In the present study, we present a novel coverage method combining ELISA-based immunocapture with protein identification by liquid chromatography–tandem mass spectrometry (LC–MS/MS): ELISA-MS. ELISA-MS is used to accurately determine HCP coverage of an early process sample by three commercially available anti-Escherichia coli HCP antibodies, evading the limitations of current methods for coverage analysis, and taking advantage of the benefits of MS analysis. The results obtained comprise a list of individual HCPs covered by each HCP antibody. The novel method shows high sensitivity, high reproducibility, and enables tight control of nonspecific binding through inclusion of a species-specific isotype control antibody. We propose that ELISA-MS will be a valuable supplement to existing coverage methods or even a replacement. ELISA-MS will increase the possibility of selecting the best HCP ELISA, thus improving HCP surveillance and resulting in a final HCP profile with the lowest achievable risk. Overall, this will be beneficial to both the pharmaceutical industry and patient safety.  相似文献   

10.
    
Viruses have coevolved with their hosts, acquiring strategies to subvert host cellular pathways for effective viral replication and spread. Human cytomegalovirus (HCMV), a widely-spread β-herpesvirus, is a major cause of birth defects and opportunistic infections in HIV-1/AIDS patients. HCMV displays an intricate system-wide modulation of the human cell proteome. An impressive array of virus–host protein interactions occurs throughout the infection. To investigate the virus life cycle, proteomics has recently become a significant component of virology studies. Here, we review the mass spectrometry-based proteomics approaches used in HCMV studies, as well as their contribution to understanding the HCMV life cycle and the virus-induced changes to host cells. The importance of the biological insights gained from these studies clearly demonstrate the impact that proteomics has had and can continue to have on understanding HCMV biology and identifying new therapeutic targets.  相似文献   

11.
蛋白质的N末端作为合成的起始,其氨基酸序列组成及翻译后修饰直接影响着蛋白质的活性、稳定性和细胞内定位,调控着细胞内的信号转导,甚至决定了这些蛋白质的命运。对蛋白质N末端组学的系统研究不仅可以揭示N末端区域对整个蛋白质的重要作用,有助于我们深入地了解蛋白质在各种生命活动中所扮演的角色,同时在实现蛋白质组高覆盖、基因组重注释等方面也有着重要的价值。本文结合我们的现有工作,综述了近年来蛋白质N末端组学的研究进展,尤其是一些重要的基于质谱的N末端富集技术和方法。  相似文献   

12.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013  相似文献   

13.
Ubiquitin signaling regulates a wide variety of cellular events, although it is mostly known to mediate protein degradation by the proteasome complex. The rapid development in mass spectrometry offers state-of-the-art technologies for addressing biological challenges in ubiquitin signaling. The First Conference on Proteomics of Protein Degradation & Ubiquitin Pathways in Vancouver, Canada, covers the latest progress in key topics of the field and fosters collaborative interactions among researchers.  相似文献   

14.
ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR < 0.01) are identified, among which 211 are up- and 159 are down-regulated for at least 1.5-fold (n = 3, p < 0.05). Gene ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.  相似文献   

15.
生物质谱技术是蛋白质组学的支撑技术.详细论述了质谱技术的分类与基本分析原理,重点论述了质谱技术的发展变化,包括基质辅助激光解吸飞行时间质谱技术,电喷雾质谱技术,MALDI-Q-TOF和MAL-DI-TOF-TOF等质谱技术,以及质谱技术在蛋白质组学研究中的应用与未来的发展和挑战.  相似文献   

16.
    
The generation of proteomic data is becoming ever more high throughput. Both the technologies and experimental designs used to generate and analyze data are becoming increasingly complex. The need for methods by which such data can be accurately described, stored and exchanged between experimenters and data repositories has been recognized. Work by the Proteome Standards Initiative of the Human Proteome Organization has laid the foundation for the development of standards by which experimental design can be described and data exchange facilitated. The Minimum Information About a Proteomic Experiment data model describes both the scope and purpose of a proteomics experiment and encompasses the development of more specific interchange formats such as the mzData model of mass spectrometry. The eXtensible Mark-up Language-MI data interchange format, which allows exchange of molecular interaction data, has already been published and major databases within this field are supplying data downloads in this format.  相似文献   

17.
蛋白质的C末端在蛋白质进行各项生命活动过程中都起着极其重要的作用。它不仅标志着DNA转录翻译成蛋白质过程的初步完成,更是参与和调控了蛋白质的各种生理功能。研究蛋白质的C末端不仅有利于完整蛋白质的鉴定,对于在分子水平理解蛋白质的信号传导和生化功能是十分必要的。文中结合我们的研究工作,综述了近年来基于生物质谱的蛋白质C末端研究的相关进展,包括了C末端的识别、鉴定以及蛋白质C末端肽段富集的新方法和新技术。  相似文献   

18.
    
Host cell proteins (HCPs) are those produced or encoded by the organisms and unrelated to the intended recombinant product. Some are necessary for growth, survival, and normal cellular processing whereas others may be non‐essential, simply carried along as baggage. Like the recombinant product, HCPs may also be modified by the host with a number of post‐translational modifications. Regardless of the utility, or lack thereof, HCPs are undesirable in the final drug substance. Though commonly present in small quantities (parts per million expressed as nanograms per milligrams of the intended recombinant protein) much effort and cost is expended by industry to remove them. The purpose of this review is to summarize what is of relevance in regards to the biology, the impact of genomics and proteomics on HCP evaluation, the regulatory expectations, analytical approaches, and various methodologies to remove HCPs with bioprocessing. Historical data, bioinformatics approaches and industrial case study examples are provided. Finally, a proposal for a risk assessment tool is provided which brings these facets together and proposes a means for manufacturers to classify and organize a control strategy leading to meaningful product specifications. Biotechnol. Bioeng. 2009;103: 446–458. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
20.
Proteomics is a data-rich discipline that makes extensive use of separation tools, mass spectrometry and bioinformatics to analyze and interpret the features and dynamics of the proteome. A major challenge for the field is how proteomics data can be stored and managed, such that data become permanent and can be mined with current and future tools. This article details our experience in the development of a commercial proteomic information management system. We identify the challenges faced in data acquisition, workflow management, data permanence, security, data interpretation and analysis, as well as the solutions implemented to address these issues. We finally provide a perspective on data management in proteomics and the implications for academic and industry-based researchers working in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号