首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perfusion cell culture, confined traditionally to the production of fragile molecules, is currently gaining broader attention in the biomanufacturing of therapeutic proteins. The development of these processes is made difficult by the limited availability of appropriate scale-down models. This is due to the continuous operation that requires complex control and cell retention capacity. For example, the determination of an optimal perfusion and bleed rate for continuous cell culture is often performed in scale-down bioreactors and requires a substantial amount of time and effort. To increase the experimental throughput and decrease the required workload, a semi-continuous procedure, referred to as the VCDmax (viable cell density) approach, has been developed on the basis of shake tubes (ST) and deepwell plates (96-DWP). Its effectiveness has been demonstrated for 12 different CHO-K1-SV cell lines expressing an IgG1. Further, its reliability has been investigated through proper comparisons with perfusion runs in lab-scale bioreactors. It was found that the volumetric productivity and the CSPRmin (cell specific perfusion rate) determined using the ST and 96-DWP models were successfully (mostly within the experimental error) confirmed in lab-scale bioreactors, which then covered a significant scale-up from the half milliliter to the liter scale. These scale-down models are very useful to design and scale-up optimal bioreactor operating conditions as well as screening for different media and cell lines.  相似文献   

2.
Continuous upstream processing in mammalian cell culture for recombinant protein production holds promise to increase product yield and quality. To facilitate the design and optimization of large-scale perfusion cultures, suitable scale-down mimics are needed which allow high-throughput experiments to be performed with minimal raw material requirements. Automated microbioreactors are available that mimic batch and fed-batch processes effectively but these have not yet been adapted for perfusion cell culture. This article describes how an automated microbioreactor system (ambr15) can be used to scale-down perfusion cell cultures using cell sedimentation as the method for cell retention. The approach accurately predicts the viable cell concentration, in the range of about 1 × 107 cells/mL for a human cell line, and cell viability of larger scale cultures using a hollow fiber based cell retention system. While it was found to underpredict cell line productivity, the method accurately predicts product quality attributes, including glycosylation profiles, from cultures performed in bioreactors with working volumes between 1 L and 1,000 L. The spent media exchange method using the ambr15 was found to predict the influence of different media formulations on large-scale perfusion cultures in contrast to batch and chemostat experiments performed in the microbioreactor system. The described experimental setup in the microbioreactor allowed an 80-fold reduction in cell culture media requirements, half the daily operator time, which can translate into a cost reduction of approximately 2.5-fold compared to a similar experimental setup at bench scale.  相似文献   

3.

The increasing demand for biopharmaceuticals produced in mammalian cells has driven the industry to enhance productivity of bioprocesses through different strategies. This is why fed-batch and perfusion cultures are considered more attractive choices than batch processes. In this context, the availability of reliable online measuring systems for cell density and metabolic activity estimation will help the application of these processes. The present work focuses on the comparison of two different monitoring tools for indirect estimation of biomass concentration in a HEK293 cell cultures producing IFN-γ: on one side, the oxygen uptake rate (O.U.R.) determination, by means of application of the dynamic method measurement which is already a widely used tool and, on the other side, a new robust online monitoring tool based on the alkali buffer addition used to maintain the pH set point. Both strategies allow a proper monitoring of cell growth and metabolic activity, with precise identification of the balanced cell growth and the most important action in the process, as is the media feeding. The application of these monitoring systems in fed-batch processes allows extending the growth of HEK293 cells, which in turn results in higher final cell concentrations compared with Batch strategy (7 · 106 cells mL−1), achieving 14 · 106 cells mL−1 for the fed-batch based on O.U.R. and 19 · 106 cells mL−1 for the fed-batch based on the alkali addition. Product titter is also increased in respect of the batch strategy (3.70 mg L−1), resulting in 8.27 mg L−1 when fed-batch was based on O.U.R. and 11.49 mg L−1 when it was based on the alkali buffer strategy. Results prove that fed-batch strategy based on the alkali buffer addition is a robust online monitoring method that has shown its great potential to optimize the feeding strategy in HEK293 fed-batch cultures.

  相似文献   

4.
Perfusion is a cell culture mode that is gaining popularity for the manufacture of monoclonal antibodies and their derivatives. The cell culture media supporting perfusion culture need to support higher cell densities than those used in fed-batch culture. Therefore, when switching from a fed-batch to a perfusion mode, a new medium need to be developed which supports high cell densities, high productivity, and favorable product quality. We have developed a method for deriving perfusion culture media based on existing fed-batch media and feeds. We show that we can obtain culture media that successfully support perfusion cultures in a single-use rocking bioreactor system at cell-specific perfusion rates below 25 pL−1 cell−1 day−1. High productivities and favorable product quality are also achievable.  相似文献   

5.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

6.
Bioconversion of waste animal fat (WAF) to polyhydroxyalkanoates (PHAs) is an approach to lower the production costs of these plastic alternatives. However, the solid nature of WAF requires a tailor-made process development. In this study, a double-jacket feeding system was built to thermally liquefy the WAF to employ a continuous feeding strategy. During laboratory-scale cultivations with Ralstonia eutropha Re2058/pCB113, 70% more PHA (45 gPHA L−1) and a 75% higher space–time yield (0.63 gPHA L−1 h−1) were achieved compared to previously reported fermentations with solid WAF. During the development process, growth and PHA formation were monitored in real-time by in-line photon density wave spectroscopy. The process robustness was further evaluated during scale-down fermentations employing an oscillating aeration, which did not alter the PHA yield although cells encountered periods of oxygen limitation. Flow cytometry with propidium iodide staining showed that more than two-thirds of the cells were viable at the end of the cultivation and viability was even little higher in the scale-down cultivations. Application of this feeding system at 150-L pilot-scale cultivation yielded in 31.5 gPHA L−1, which is a promising result for the further scale-up to industrial scale.  相似文献   

7.
《Biomass》1987,12(1):37-47
The effect of environmental factors on cell-lipid content, on the growth rate and on the overall productivity of Nannochloropsis salina was tested in the laboratory and in outdoor cultures. Under optimum conditions in the laboratory, the maximum growth rate (μmax) was 0·030 h−1, which corresponds to a doubling time of 23 h. Cellular lipid content was affected by the phase of growth and the temperature, but not by nitrogen starvation, pH or the source of sea water. The most important factor affecting the output rate of biomass was the cell concentration. The maximum biomass productivity obtained in outdoor ponds was 24·5 g·m−2·day−1, and the lipid production rate was 4·0 g m−2·day−1.  相似文献   

8.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

9.
The growth of heterocystous bluegreen algae in various concentrations of sodium, was examined in axenic culture as well as in situ studies. Anabaena cylindrica Lemm. with no Na+ added, suffered from decreased rates of acetylene reduction, 14C, assimilation, excretion of organic C as well as lower concentrations of chlorophyll a and particulate organic C compared to cultures supplied with 5, 10, and 50 mg Na+·l−1 Sodium deficient algae released, extracellularly a higher percentage of previously fixed C as organic C. No differences in any parameter measured were demonstrable among cultures grown with 5, 10, and 50 mg Na+·l−1 High nitrate concentrations (20 mg NO3·l−1) resulted in decreased rates of acetylene reduction and heterocyst numbers in. Na sufficient, and Na deficient cultures: however, decreased, cellular Na content at high NO3 levels occurred only in N deficient, cultures. Higher percentages of excreted organic C occurred with increasing NO3 concentrations in Na deficient cultures. Sodium enrichment of natural bluegreen populations with the addition of 50, 100, and 200 mg Na+·l−1 elicited neither a stimulatory nor an inhibitory response in photosynthetic C fixation. In contrast, the addition of small amounts of Na+ (5 mg·l) resulted in increased C fixation. However, since the Na. concentration of the lake water, at ca. 5 mg Na+·l−1, was sufficient for growth of the bluegreens present, sodium, is not assumed to be limiting under most natural conditions. No increase in in situ acetylene reduction rates occurred with additions of sodium.  相似文献   

10.
The reaction between ligninase and hydrogen peroxide yielding Compound I has been investigated using a stopped-flow rapid-scan spectrophotometer. The optical absorption spectrum of Compound I appears different to that reported by Andrawis, A. et al. (1987) and Renganathan, V. and Gold, M.H. (1986), in that the Soret-maximum is at 401 nm rather than 408 nm. The second-order rate constant (4.2·105 M−1·s−1) for the formation of Compound I was independent of pH (pH 3.0–6.0). In the absence of external electron donors, Compound I decayed to Compound II with a half-life of 5–10 s at pH 3.1. The rate of this reaction was not affected by the H2O2 concentration used. In the presence of either veratryl alcohol or ferrocyanide, Compound II was rapidly generated. With ferrocyanide, the second-order rate constant increased from 1.9·104 M−1·s−1 to 6.8·106 M−1·s−1 when the pH was lowered from 6.0 to 3.1. With veratryl alcohol as an electron donor, the second-order rate constant for the formation of Compound II increased from 7.0·103 M−1·s−1 at pH 6.0 to 1.0·105 M−1·s−1 at pH 4.5. At lower pH values the rate of Compound II formation no longer followed an exponential relationship and the steady-state spectral properties differed to those recorded in the presence of ferrocyanide. Our data support a model of enzyme catalysis in which veratryl alcohol is oxidized in one-electron steps and strengthen the view that veratryl alcohol oxidation involves a substrate-modified Compound II intermediate which is rapidly reduced to the native enzyme.  相似文献   

11.
To investigate the influence of pH on methane and sulfide production, continuous cultures were done using a bio-reactor packed with pumice stone. Sulfate (1 g SO42−·l−1) in a methanol defined medium (10 g·l−1) was almost completely reduced to sulfide at pHs between 7.0 and 7.5 in methane fermentation, but at pHs between 6.2 and 6.8, sulfate reduction to sulfide was suppressed up to 40%. In addition, methane fermentation was not inhibited by 10 g sulfate·l−1.  相似文献   

12.
《Process Biochemistry》1999,34(4):341-347
The influence of initial glucose concentrations on the production of biomass and lutein by Chlorella protothecoides CS-41 was investigated in batch cultures using both shake flasks and fermentors. The maximum biomass concentration increased from 4·9 to 31·2 g litre−1 dry cells with an increase in initial glucose concentration from 10 to 80 g litre−1. An even higher initial glucose concentration (100 g litre−1) resulted in a lower biomass concentration, a lower specific growth rate, a lower growth yield coefficient and a considerably longer lag phase, which might be due to substrate inhibition. The initial glucose level also had a significant effect on the production of lutein. In a 3·7-litre fermentor an increase in lutein production from 19·39 to 76·56 mg litre−1 was obtained with an increase in initial glucose concentration from 10 to 40 g litre−1, within which range, lutein yield coefficient was constant (YItn=1·90±0·02 mg g−1). A simple substrate inhibition model was developed, which fitted the experimental data better than the classical Haldane model. A group of time-dependent kinetic models for algal cultivation in fermentors were also constructed, which were in good agreement with the experimental results and could be employed to predict the production of biomass and lutein, and the consumption of glucose in fermentor cultures.  相似文献   

13.
Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l -lactate, on the cultivation of the cadaverine producing strain C. glutamicum DM1945Δact3:Ptuf-ldcCopt and their potential role in scale up related performance losses. A fluctuating power input in shake flask and stirred tank cultivations with mineral salt was applied to mimic discontinuous oxygen availability. Results demonstrate, whenever sufficient oxygen was available, C. glutamicum recovered from previously occurring stressful conditions like an oxygen limiting phase. Reassimilation of acids was detected simultaneously. In cultures, which were supplemented with either acetate or l -lactate, a rapid cometabolization of both acids in presence of glucose was observed, showing conversion rates of 7.8 and 3.8 mmol gcell dry weight−1 hr−1, respectively. Uptake of these acids was accompanied by increased oxygen consumption. Proteins related to oxidative stress response, glycogen synthesis, and the main carbon metabolism were found in altered concentrations under oscillatory cultivation conditions. (Proteomics data are available via ProteomeXchange with identifier PXD012760). Virtually no impact on growth or product formation was observed. We conclude that the reduced growth and product formation in scale-down cultivations when complex media was used is not caused by the accumulation of carboxylic acids.  相似文献   

14.
The effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the N-limited marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) were investigated by chemical analysis of cell components and incorporation of 14C-bicarbonate. The diatom was grown in pH-regulated batch cultures with a 14:10 h LD cycle until N depletion. The cells were then incubated in the dark with 14C-bicarbonate, but without a source of N for 2 h, then in the dark with 63 μmol·L−1 NH4+ for 3 h. Without N, the cellular concentration of free amino acids was almost constant (∼4.5 fmol·cell−1). Added NH4+ was assimilated at a rate of 12 fmol·cell−1·h−1, and the cellular amino acid pool increased rapidly (doubled in <1 h, tripled in <3 h). The glutamine level increased steeply (45× within 3 h), and the Gln/ Glu ratio increased from 0.1 to 2.4 within 3 h. The rate of dark C fixation during N depletion was only 1.0 fmol·cell−1·h−1. The addition of NH4+ strongly stimulated dark C fixation, leading to an assimilation rate of 4.0 fmol·cell−1·h−1, corresponding to a molar C/N uptake ratio of 0.33. Biochemical fractionation of organic 14C showed no significant 14C fixation into amino acids during N depletion, but during the first 1–2 h of NH4+ assimilation, amino acids were rapidly radiolabeled, accounting for virtually all net 14C fixation. These results indicate that anaplerotic β-carboxylation is activated during NH4+ assimilation to provide C4 intermediates for amino acid biosynthesis. The level of cellular β-1,3-d-glucan was constant (16.5 pg·cell−1) during N depletion, but NH4+ assimilation activated a mobilization of 28% of the reserve glucan within 3 h. The results indicate that β-1,3-glucan in diatoms is the ultimate substrate for β-carboxylation, providing precursors for amino acid biosynthesis in addition to energy from respiration.  相似文献   

15.
16.
《Biomass》1988,15(4):249-257
An experiment was conducted in the growth chamber to quantify the biomass production, N removal and N2 fixation from a synthetic medium by Chlamydomonas reinhardtii and Anabaena flos-aquae. Nitrogen was supplied at a concentration of 100 mg liter−1 of NO315N and NH4+15 (3·5 atom %), respectively. After 21 days Chlamydomonas reinhardtii removed an average of 83·8 and 78·7 mg N liter−1 as NO3 and NH4+, respectively. Averages of 0·89 and 0·71 g liter−1 (first batch), 1·63 and 0·95 g liter (second batch) algal biomass were collected from NO3 and NH4+ media, respectively. Uptake rates of 0·11 mg 15N g−1 algae day−1 from NO3 medium and 0·10 mg 15N g−1 algae day−1 from NH4+ medium were calculated. Algal cells grown in NO3 and NH4+ medium contained 71 and 65 g N kg−1 (first batch), 39 and 58 g N kg−1 (second batch), respectively. Anabaena flos-aquae produced averages of 0·58 and 0·46 g liter−1 (first batch), 0·55 and 0·48 g liter−1 (second batch) after 14 days of growth from NO3 and NH4+ media, respectively. Blue-green algal biomass contained higher N (81–98 g kg−1) than green algae. Isotope dilution method for determining N2 fixation indicated that 55% and 77% of total N of blue-green algae grown in NO3 and NH4+ media, respectively, was derived from the atmosphere.  相似文献   

17.
Photoautotrophic growth of a marine non-heterocystous filamentous cyanobacterium, Symploca sp. strain S84, was examined under nitrate-assimilating and N2-fixing conditions. Under continuous light, photon flux density of 55 μmol photons·m−2 ·s−1 was at a saturating level for growth, and light did not inhibit the growth rate under N2-fixing conditions even when the photon flux density was doubled (110 μmol photons·m−2 ·s−1). Doubling times of the N2-fixing cultures under 55 and 110 μmol photons·m−2 ·s−1 were about 30 and 31 h, respectively. Under 110 μmol photons·m−2 ·s−1 during the light phase of an alternating 12:12-h light:dark (L:D) cycle, the doubling time of the N2-fixing culture was also about 30 h. When grown diazotrophically under a 12:12-h L:D regime, C2H2 reduction activity was observed mainly during darkness. In continuous light, relatively large cyclic fluctuations in C2H2 reduction were observed during growth. The short-term (<4 h) effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; 5 μM) indicated that C2H2 reduction activity was not influenced by photosynthetic O2 evolution. Long-term (24 h) effects of DCMU indicated that photosynthesis and C2H2 reduction activity occur simultaneously. These results indicate that strain S84 grows well under diazotrophic conditions when saturating light is supplied either continuously or under a 12:12-h L:D diel light regime.  相似文献   

18.
A multichannel automated chamber system was developed for continuous monitoring of CO2 exchange at multiple points between agro-ecosystem or soil and atmosphere. This system consisted of an automated chamber subsystem with a CO2 concentration analyzer and a data logging subsystem. Both subsystems were under the control of a programmable logic controller (PLC). The automated chamber subsystem contained 18 chambers (50 cm × 50 cm × 50 cm) and a compressor. The chamber lids were closed and can be automatically opened. During measurement, one of the 18 chambers was kept closed for three minutes for measuring and the other chambers were kept open to maintain the natural soil conditions to the maximum extent. Environmental variables were simultaneously measured using sensors and recorded by the data logger. The reliability of the multichannel automated chamber system was tested and the results showed that the turbulence of the fans had no significant effect on the CO2 exchange. The changes in the air and the temperature of soil and soil moisture inside the chambers, caused by the enclosure of the chambers, were not significant. The net ecosystem CO2 exchange for the wheat ecosystem was ?2.35 μmol·m?2·s>?1 and the soil respiration was 3.87 μmol·m?2·s>?1 in the wheat field, and 6.61 μmol·m?2·s>?1 in the apple orchard.  相似文献   

19.
Media preparation for perfusion cell culture processes contributes significantly to operational costs and the footprint of continuous operations for therapeutic protein manufacturing. In this study, definitions are given for the use of a perfusion equivalent nutrient feed stream which, when used in combination with basal perfusion medium, supplements the culture with targeted compounds and increases the medium depth. Definitions to compare medium and feed depth are given in this article. Using a concentrated nutrient feed, a 1.8-fold medium consumption (MC) decrease and a 1.67-fold increase in volumetric productivity (PR) were achieved compared to the initial condition. Later, this strategy was used to push cell densities above 100 × 106 cells/ml while using a perfusion rate below 2 RV/day. In this example, MC was also decreased 1.8-fold compared to the initial condition, but due to the higher cell density, PR was increased 3.1-fold and to an average PR value of 1.36 g L−1 day−1 during a short stable phase, and versus 0.46 g L−1 day−1 in the initial condition. Overall, the performance improvements were aligned with the given definitions. This multiple feeding strategy can be applied to gain some flexibility during process development and also in a manufacturing set-up to enable better control on nutrient addition.  相似文献   

20.
Lepechinia meyenii is a medicinal plant specialized in the biosynthesis of different types of antioxidants including the diterpenes carnosic (CA) acid and carnosol (CS). Herein we present the results of plant tissue culture approaches performed in this medicinal plant with particular emphasis on the generation and evaluation of a cell suspension system for CA and CS production. The effect of sucrose concentration, temperature, pH, and UV-light exposure was explored. In addition, diverse concentrations of microbial elicitors (salicylic acid, pyocyanin, Glucanex, and chitin), simulators of abiotic elicitors (polyethylene glycol and NaCl), and biosynthetic precursors (mevalonolactone, geranylgeraniol, and miltiradiene/abietatriene) were evaluated on batch cultures for 20 days. Miltiradiene/abietatriene obtainment was achieved through a metabolic engineering approach using a recombinant strain of Saccharomyces cerevisiae. Our results suggested that the maximum accumulation (Accmax) of CA and CS was mainly conferred to stimuli associated with oxidative stress such as UV-light exposure (Accmax, 6.2 mg L−1) polyethylene glycol (Accmax, 6.5 mg L−1) NaCl (Accmax, 5.9 mg L−1) which simulated drought and saline stress, respectively. Nevertheless the bacterial elicitor pyocyanin was also effective to increase the production of both diterpenes (Accmax, 6.4 mg L−1). Outstandingly, the incorporation of upstream biosynthetic precursors such as geranylgeraniol and miltiradiene/abietatriene, generated the best results with Accmax of 8.6 and 16.7 mg L−1, respectively. Optimized batch cultures containing 100 mg L−1 geranylgeraniol, 50 mg L−1 miltiradiene/abietatriene (95 : 5 %) and 5 g L−1 polyethylene glycol treated with 6 min UV light pulse during 30 days resulted in Accmax of 26.7 mg L−1 for CA and 17.3 mg L−1 for CS on days 18–24. This strategy allowed to increase seven folds the amounts of CA and CS in comparison with batch cultures without elicitation (Accmax, 4.3 mg L−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号