共查询到20条相似文献,搜索用时 15 毫秒
1.
Juliana Stuckey Daniel Strauss Adith Venkiteshwaran Jinxin Gao Wen Luo Michelle Quertinmont Sean O'Donnell Dayue Chen 《Biotechnology progress》2014,30(1):79-85
Viral filtration is routinely incorporated into the downstream purification processes for the production of biologics produced in mammalian cell cultures (MCC) to remove potential viral contaminants. In recent years, the use of retentive filters designed for retaining parvovirus (~20 nm) has become an industry standard in a conscious effort to further improve product safety. Since retentive filters remove viruses primarily by the size exclusion mechanism, it is expected that filters designed for parvovirus removal can effectively clear larger viruses such as retroviruses (~100 nm). In an attempt to reduce the number of viral clearance studies, we have taken a novel approach to demonstrate the feasibility of claiming modular retrovirus clearance for Asahi Planova 20N filters. Porcine parvovirus (PPV) and xenotropic murine leukemia virus (XMuLV) were co‐spiked into six different feedstreams and then subjected to laboratory scale Planova 20N filtration. Our results indicate that Planova 20N filters consistently retain retroviruses and no retrovirus has ever been detected in the filtrates even when significant PPV breakthrough is observed. Based on the data from multiple in‐house viral validation studies and the results from the co‐spiking experiments, we have successfully claimed a modular retrovirus clearance of greater than 6 log10 reduction factors (LRF) to support clinical trial applications in both USA and Europe. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:79–85, 2014 相似文献
2.
Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody‐related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late‐phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro‐ and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log10 were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses. Biotechnol. Bioeng. 2010;106: 238–246. Published 2010 Wiley Periodicals, Inc. 相似文献
3.
Connell-Crowley L Nguyen T Bach J Chinniah S Bashiri H Gillespie R Moscariello J Hinckley P Dehghani H Vunnum S Vedantham G 《Biotechnology and bioengineering》2012,109(1):157-165
One measure taken to ensure safety of biotherapeutics produced in mammalian cells is to demonstrate the clearance of potential viral contaminants by downstream purification processes. This paper provides evidence that cation exchange chromatography (CEX), a widely used polishing step for monoclonal antibody (mAb) production, can effectively and reproducibly remove xMuLV, a retrovirus used as a model of non‐infectious retrovirus‐like particles found in Chinese hamster ovary cells. The dominant mechanism for xMuLV clearance by the strong cation exchanger, Fractogel SO, is by retention of the virus via adsorption instead of inactivation. Experimental data defining the design space for effective xMuLV removal by Fractogel SO with respect to operational pH, elution ionic strength, loading, and load/equilibration buffer ionic strength are provided. Additionally, xMuLV is able to bind to other CEX resins, such as Fractogel COO? and SP Sepharose Fast Flow, suggesting that this phenomenon is not restricted to one type of CEX resin. Taken together, the data indicate that CEX chromatography can be a robust and reproducible removal step for the model retrovirus xMuLV. Biotechnol. Bioeng. 2012;109: 157–165. © 2011 Wiley Periodicals, Inc. 相似文献
4.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
5.
Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode
下载免费PDF全文

Timothy Iskra Ashley Sacramo Chris Gallo Ranga Godavarti Shuang Chen Scott Lute Kurt Brorson 《Biotechnology progress》2015,31(3):750-757
Anion exchange chromatography (AEX) operated under weak partitioning mode has been proven to be a powerful polishing step as well as a robust viral clearance step in Pfizer's monoclonal antibody (mAb) platform purification process. A multivariate design of experiment (DoE) study was conducted to understand the impact of operating parameters and feedstream impurity levels on viral clearance by weak partitioning mode AEX. Bacteriophage was used initially as a surrogate for neutral and acidic isoelectric point mammalian viruses (e.g., retrovirus and parvovirus). Five different mAbs were used in the evaluation of process parameters such as load challenge (both product and impurities), load pH, load conductivity, and contact time (bed height and flow‐rate). The operating ranges obtained from phage clearance studies and Pfizer's historical data were used to define an appropriate operating range for a subsequent clearance study with model retrovirus and parvovirus. Both phage and virus clearance evaluations included feedstreams containing different levels of impurities such as high molecular mass species (HMMS), host cell proteins (HCPs), and host cell DNA. For all the conditions tested, over 5 log10 of clearance for both retrovirus and parvovirus was achieved. The results demonstrated that weak partitioning mode AEX chromatography is a robust step for viral clearance and has the potential to be included as part of the modular viral clearance approach. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:750–757, 2015 相似文献
6.
Yumiko Masuda Masashi Tsuda Chie Hashikawa-Muto Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2019,35(5):e2858
Viral safety is a critical concern with regard to monoclonal antibody (mAb) products produced in mammalian cells such as Chinese hamster ovary cells. Manufacturers are required to ensure the safety of such products by validating the clearance of viruses in downstream purification steps. Cation exchange (CEX) chromatography is widely used in bind/elute mode as a polishing step in mAb purification. However, bind/elute modes require a large volume of expensive resin. To reduce the production cost, the use of CEX chromatography in overloaded mode has recently been investigated. The viral clearance ability in overloaded mode was evaluated using murine leukemia virus (MLV). Even under high-load conditions such as 2,000 g mAb/L resin, MLV was removed from mAb solutions. This viral clearance ability was not significantly affected by resin type or mAb type. The overloaded mode can also remove other types of viruses such as pseudorabies virus and reovirus Type 3 from mAb solutions. Based on these results, this cost-effective overloaded mode is comparable to the bind-elute mode in terms of viral removal. 相似文献
7.
8.
Glen R. Bolton Keith R. Selvitelli Ionela Iliescu Douglas J. Cecchini 《Biotechnology progress》2015,31(2):406-413
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc‐fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc‐fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:406–413, 2015 相似文献
9.
Miesegaes GR Lute S Strauss DM Read EK Venkiteshwaran A Kreuzman A Shah R Shamlou P Chen D Brorson K 《Biotechnology and bioengineering》2012,109(8):2048-2058
Traditionally, post-production culture harvest capture of therapeutic monoclonal antibodies (mAbs) is performed using Protein A chromatography. We investigated the efficiency and robustness of cation exchange chromatography (CEX) in an effort to evaluate alternative capture methodologies. Up to five commercially available CEX resins were systematically evaluated using an experimentally optimized buffer platform and a design-of-experiment (DoE) approach for their ability to (a) capture a model mAb with a neutral isoelectric point, (b) clear three model viruses (porcine parvovirus, CHO type-C particles, and a bacteriophage). This approach identified a narrow operating space where yield, purity, and viral clearance were optimal under a CEX capture platform, and revealed trends between viral clearance of PPV and product purity (but not yield). Our results suggest that after unit operation optimization, CEX can serve as a suitable capture step. 相似文献
10.
对2015年1月30日召开的“创新药物研发高层论坛”的专家报告内容进行归纳总结,旨在为从事药品注册、创新药及仿制药研发、药物临床试验质量管理规范(GCP)及药品非临床研究质量管理规范(GLP)工作的人士提供信息参考。 相似文献
11.
基于各学科信息作出安全性、有效性和质量可控性方面的综合评价是新药研究评价的灵魂,是一个多学科、多组织参与的综合决策过程。根据新药评价研究的实际工作经验,介绍一个新药临床试验综合评价的逻辑性、结构性的工作思考模式,有助于将不同专业的技术信息和技术结论有机整合,作出科学决策。 相似文献
12.
Yumiko Masuda Yuka Ogino Kozo Yamaichi Yusuke Takahashi Koichi Nonaka Kaori Wakamatsu 《Biotechnology progress》2020,36(3):e2955
Anion exchange (AEX) chromatography in the flow-through mode is a widely employed purification process for removal of process/product-related impurities and exogenous/endogenous viruses from monoclonal antibodies (mAbs). The pH of the mobile phase for AEX chromatography is typically set at half a unit below the isoelectric point (pI) of each mAb (i.e., pI − 0.5) or lower and, in combination with a low ionic strength, these conditions are usually satisfactory for both the recovery of the mAb and removal of impurities. However, we have recently encountered a tight binding of mAb1 to AEX resins under these standard chromatographic conditions. This anomalous adsorption behavior appears to be an effect of the asymmetric charge distribution on the surface of the mAb1. We found that mAb1 did not bind to the AEX resins if the mobile phase has a much lower pH and higher ionic strength, but those conditions would not allow adequate virus removal. We predicted that the use of membrane adsorbers might provide effective mAb1 purification, since the supporting matrix has a network structure that would be less susceptible to interactions with the asymmetric charge distribution on the protein surface. We tested the Natriflo HD-Q AEX membrane adsorber under standard chromatographic conditions and found that mAb1 flowed through the membrane adsorber, resulting in successful separation from murine leukemia virus. This AEX membrane adsorber is expected to be useful for process development because mAbs can be purified under similar standard chromatographic conditions regardless of their charge distributions. 相似文献
13.
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies. 相似文献
14.
Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed
下载免费PDF全文

William J. Rayfield David J. Roush Rebecca A. Chmielowski Nihal Tugcu Shehab Barakat Jason K. Cheung 《Biotechnology progress》2015,31(3):765-774
Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high‐pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:765–774, 2015 相似文献
15.
Strauss DM Gorrell J Plancarte M Blank GS Chen Q Yang B 《Biotechnology and bioengineering》2009,102(1):168-175
The mammalian cell-lines used to produce biopharmaceutical products are known to produce endogenous retrovirus-like particles and have the potential to foster adventitious viruses as well. To ensure product safety and regulatory compliance, recovery processes must be capable of removing or inactivating any viral impurities or contaminants which may be present. Anion exchange chromatography (AEX) is a common process in the recovery of monoclonal antibody products and has been shown to be effective for viral removal. To further characterize the robustness of viral clearance by AEX with respect to process variations, we have investigated the ability of an AEX process to remove three model viruses using various combinations of mAb products, feedstock conductivities and compositions, equilibration buffers, and pooling criteria. Our data indicate that AEX provides complete or near-complete removal of all three model viruses over a wide range of process conditions, including those typically used in manufacturing processes. Furthermore, this process provides effective viral clearance for different mAb products, using a variety of feedstocks, equilibration buffers, and different pooling criteria. Viral clearance is observed to decrease when feedstocks with sufficiently high conductivities are used, and the limit at which the decrease occurs is dependent on the salt composition of the feedstock. These data illustrate the robust nature of the AEX recovery process for removal of viruses, and they indicate that proper design of AEX processes can ensure viral safety of mAb products. 相似文献
16.
Shyam Panjwani Ivan Cui Konstantinos Spetsieris Michal Mleczko Wensheng Wang June X. Zou Mohammad Anwaruzzaman Shawn Liu Roger Canales Oliver Hesse 《Biotechnology progress》2021,37(3):e3135
The production of recombinant therapeutic proteins from animal or human cell lines entails the risk of endogenous viral contamination from cell substrates and adventitious agents from raw materials and environment. One of the approaches to control such potential viral contamination is to ensure the manufacturing process can adequately clear the potential viral contaminants. Viral clearance for production of human monoclonal antibodies is achieved by dedicated unit operations, such as low pH inactivation, viral filtration, and chromatographic separation. The process development of each viral clearance step for a new antibody production requires significant effort and resources invested in wet laboratory experiments for process characterization studies. Machine learning methods have the potential to help streamline the development and optimization of viral clearance unit operations for new therapeutic antibodies. The current work focuses on evaluating the usefulness of machine learning methods for process understanding and predictive modeling for viral clearance via a case study on low pH viral inactivation. 相似文献
17.
Validation of biopharmaceutical purification processes for virus clearance evaluation 总被引:1,自引:0,他引:1
Darling A 《Molecular biotechnology》2002,21(1):57-83
Any biopharmaceutical product that has involved the use of animal-derived material during the manufacturing process has the
potential to be contaminated with animal viruses. To ensure safety of these products, extensive testing is performed on the
starting materials, such as the cell banks, and on the raw materials used in manufacture. Additional testing is also performed
at various stages of production and, in some cases, on the final product as well. Because of inherent limitations in direct
testing methods, the capacity of the downstream purification process to remove/inactivate potential viral contaminants is
also studied to give an extra degree of assurance that the final product will be free of infectious viruses. 相似文献
18.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of \"bracketed generic\" validation can be applied to this and potentially other chromatography unit operations. 相似文献
19.
Brorson K Krejci S Lee K Hamilton E Stein K Xu Y 《Biotechnology and bioengineering》2003,82(3):321-329
Viral safety is a predominant concern for monoclonal antibodies (mAbs) and other recombinant proteins (RPs) with pharmaceutical applications. Certain commercial purification modules, such as nanofiltration and low-pH inactivation, have been observed to reliably clear greater than 4 log(10) of large enveloped viruses, including endogenous retrovirus. The concept of \"bracketed generic clearance\" has been proposed for these steps if it could be prospectively demonstrated that viral log(10) reduction value (LRV) is not impacted by operating parameters that can vary, within a reasonable range, between commercial processes. In the case of low-pH inactivation, a common step in mAb purification processes employed after protein A affinity chromatography, these parameters would include pH, time and temperature of incubation, the content of salts, protein concentration, aggregates, impurities, model protein pI, and buffer composition. In this report, we define bracketed generic clearance conditions, using a prospectively defined bracket/matrix approach, where low-pH inactivation consistently achieves >or=4.6 log(10) clearance of xenotropic murine leukemia virus (X-MLV), a model for rodent endogenous retrovirus. The mechanism of retrovirus inactivation by low-pH treatment was also investigated. 相似文献
20.
The purpose of the present study was to evaluate the efficacies and mechanisms of the PAB (para-amino benzamidine) affinity column chromatography, virus filtration, pasteurization (60°C heat treatment for 10 h), and lyophilization steps employed in the manufacture of urokinase from human urine with regard to the removal and/or inactivation of human immunodeficiency virus (HIV), bovine viral diarrhoea virus (BVDV), bovine herpes virus (BHV), and murine encephalomyocarditis virus (EMCV). Samples from relevant stages of the production process were spiked with each virus and subjected to scale-down processes mimicking the manufacture of urokinase. Samples were collected at each step, immediately titrated using a 50% tissue culture infectious dose (TCID50), and the virus reduction factors evaluated. PAB chromatography was found to be an effective step for removing BVDV, BHV, and EMCV with log reduction factors of 2.79, 6.50, and 5.96, respectively. HIV, BVDV, BHV, and EMCV were completely removed during the Viresolve NFP filtration step with log reduction factors of ≥6.06, ≥4.60, ≥5.44, and ≥6.87, respectively. Pasteurization was also found to be a robust and effective step in inactivating all the viruses tested, since there were no residual viruses detected after the pasteurization process. The log reduction factors achieved by pasteurization were ≥5.73 for HIV, ≥3.86 for BVDV, ≥6.75 for BHV, and ≥5.92 for EMCV. Lyophilization showed significant efficacy for inactivating BVDV, BHV, and EMCV with log reduction factors of 2.69, 1.37, and 4.70, respectively. These results indicate that the production process for urokinase exhibited a sufficient viral reducing capacity to achieve a high margin of virus safety. 相似文献