首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
3.
Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof‐of‐concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high‐seed fed‐batch production cultures. First, we optimized the perfusion N‐1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N‐1 duration, reaching >40 × 106 vc/mL at the end of the perfusion N‐1 stage. The cultures were subsequently split into high‐seed (10 × 106 vc/mL) fed‐batch production cultures. This strategy significantly shortened the culture duration. The high‐seed fed‐batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low‐seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N‐1 and high‐seed fed‐batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low‐seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:616–625, 2014  相似文献   

4.
The development of a system capable of accurately measuring the oxygen uptake and carbon dioxide production rates during mammalian cell cultures is described. A detailed study of the specifications of the various components used in the system for the measurement of gas flow rates and composition, coupled with the validation of the system independent of the bioreactor was carried out. The aim of this study was to identify and eliminate where possible the errors controlling the accuracy of determination of gaseous metabolic rates. This study showed the importance of controlling the temperature of gaseous oxygen entering the system. With such temperature control, it was possible to obtain data with an accuracy of ±5% at the 95% confidence level. Another source of error, the use of bi-carbonate buffer, was studied. A mathematical model was used to compensate for the affect of such buffers on the determination of catbon dioxide production rates. The use of the system for the continuous determination of gaseous metabolism during the growth and production phase for recombinant CHO cell cultures is described.  相似文献   

5.
Goudar CT 《Cytotechnology》2012,64(4):465-475
A MATLAB® toolbox was developed for applying the logistic modeling approach to mammalian cell batch and fed-batch cultures. The programs in the toolbox encompass sensitivity analyses and simulations of the logistic equations in addition to cell specific rate estimation. The toolbox was first used to generate time courses of the sensitivity equations for characterizing the relationship between the logistic variable and the model parameters. Subsequently, the toolbox was used to describe CHO cell data from batch and fed-batch mammalian cell cultures. Cell density, product, glucose, lactate, glutamine, and ammonia data were analyzed for the batch culture while fed-batch analysis included cell density and product concentration. In all instances, experimental data were well described by the logistic equations and the resulting specific rate profiles were representative of the underlying cell physiology. The 6-variable batch culture data set was also used to compare the logistic specific rates with those from polynomial fitting and discrete derivative methods. The polynomial specific rates grossly misrepresented cell behavior in the initial and final stages of culture while those based on discrete derivatives had high variability due to computational artifacts. The utility of logistic specific rates to guide process development activities was demonstrated using specific protein productivity versus growth rate trajectories for the 3 cultures examined in this study. Overall, the computer programs developed in this study enable rapid and robust analysis of data from mammalian cell batch and fed-batch cultures which can help process development and metabolic flux estimation.  相似文献   

6.
Error propagation from prime variables into specific rates and metabolic fluxes was quantified for high‐concentration CHO cell perfusion cultivation. Prime variable errors were first determined from repeated measurements and ranged from 4.8 to 12.2%. Errors in nutrient uptake and metabolite/product formation rates for 5–15% error in prime variables ranged from 8–22%. The specific growth rate, however, was characterized by higher uncertainty as 15% errors in the bioreactor and harvest cell concentration resulted in 37.8% error. Metabolic fluxes were estimated for 12 experimental conditions, each of 10 day duration, during 120‐day perfusion cultivation and were used to determine error propagation from specific rates into metabolic fluxes. Errors of the greater metabolic fluxes (those related to glycolysis, lactate production, TCA cycle and oxidative phosphorylation) were similar in magnitude to those of the related greater specific rates (glucose, lactate, oxygen and CO2 rates) and were insensitive to errors of the lesser specific rates (amino acid catabolism and biosynthesis rates). Errors of the lesser metabolic fluxes (those related to amino acid metabolism), however, were extremely sensitive to errors of the greater specific rates to the extent that they were no longer representative of cellular metabolism and were much less affected by errors in the lesser specific rates. We show that the relationship between specific rate and metabolic flux error could be accurately described by normalized sensitivity coefficients, which were readily calculated once metabolic fluxes were estimated. Their ease of calculation, along with their ability to accurately describe the specific rate‐metabolic flux error relationship, makes them a necessary component of metabolic flux analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

7.
8.
9.
Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C‐mol substrate consumed) six times greater than lactate producing cells. Biotechnol. Bioeng. 2013; 110: 660–666. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Biopharmaceuticals are predominantly produced by Chinese hamster ovary (CHO) cells cultivated in fed‐batch mode. Hyperosmotic culture conditions (≥ 350 mOsmol kg∑1) resulting from feeding of nutrients may enhance specific product formation rates (qp). As an improved ATP supply was anticipated to enhance qp this study focused on the identification of suitable miRNA/mRNA targets to increase ATP levels. Therefor next generation sequencing and a compartment specific metabolomics approach were applied to analyze the response of an antibody (mAB) producing CHO cell line upon osmotic shift (280 → 430 mOsmol kg‐1). Hyperosmotic culture conditions caused a ~2.6‐fold increase of specific ATP formation rates together with a ~1.7‐fold rise in cytosolic and mitochondrial ATP‐pools, thus showing increased ATP supply. mRNA expression analysis identified several genes encoding glycosylated proteins with strictly tissue related function. In addition, hyperosmotic culture conditions induced an upregulation of miR‐132‐3p, miR‐132‐5p, miR‐182, miR‐183, miR‐194, miR‐215‐3p, miR‐215‐5p which have all been related to cell cycle arrest/proliferation in cancer studies. In relation to a previous independent CHO study miR‐183 may be the most promising target to enhance qp by stable overexpression. Furthermore, deletion of genes with presumably dispensable function in suspension growing CHO cells may enhance mAB formation by increased ATP levels.  相似文献   

11.
12.
The increasing demand for recombinant therapeutic proteins highlights the need to constantly improve the efficiency and yield of these biopharmaceutical products from mammalian cells, which is fully achievable only through proper understanding of cellular functioning. Towards this end, the current study exploited a combined metabolomics and in silico modeling approach to gain a deeper insight into the cellular mechanisms of Chinese hamster ovary (CHO) fed-batch cultures. Initially, extracellular and intracellular metabolite profiling analysis shortlisted key metabolites associated with cell growth limitation within the energy, glutathione, and glycerophospholipid pathways that have distinct changes at the exponential-stationary transition phase of the cultures. In addition, biomass compositional analysis newly revealed different amino acid content in the CHO cells from other mammalian cells, indicating the significance of accurate protein composition data in metabolite balancing across required nutrient assimilation, metabolic utilization, and cell growth. Subsequent in silico modeling of CHO cells characterized internal metabolic behaviors attaining physiological changes during growth and non-growth phases, thereby allowing us to explore relevant pathways to growth limitation and identify major growth-limiting factors including the oxidative stress and depletion of lipid metabolites. Such key information on growth-related mechanisms derived from the current approach can potentially guide the development of new strategies to enhance CHO culture performance.  相似文献   

13.
The application of a polysaccharide elicitor from yeast extract,YE, to Salvia miltiorrhiza hairy root cultures induced transientrelease of ATP from the roots to the medium, leading to a dose-dependentincrease in the extracellular ATP (eATP) level. The eATP levelrose to a peak (about 6.5 nM with 100 mg l–1 YE) at about10 h after YE treatment, but dropped to the control level 6h later. The elicitor-induced ATP release was dependent on membraneCa2+ influx, and abolished by the Ca2+ chelator EGTA or thechannel blocker La3+. The YE-induced H2O2 production was stronglyinhibited by reactive blue (RB), a specific inhibitor of membranepurinoceptors. On the other hand, the application of exogenousATP at 10–100 µM to the cultures also induced rapidand dose-dependent increases in H2O2 production and medium pH,both of which were effectively blocked by RB and EGTA. The non-hydrolyzableATP analog ATPS was as effective as ATP, but the hydrolyzedderivatives ADP or AMP were not so effective in inducing thepH and H2O2 increases. Our results suggest that ATP releaseis an early event and that eATP plays a signaling role in theelicitation of plant cell responses; Ca2+ is required for activationof the elicitor-induced ATP release and the eATP signal transduction.This is the first report on ATP release induced by a fungalelicitor and its involvement in the elicitor-induced responsesin plant cells.  相似文献   

14.
15.
Electron transport, phosphorylation and internal proton concentration were measured in illuminated spinach chloroplast thylakoid membranes under a number of conditions. Regardless of the procedure used to vary these parameters, the data fit a simple chemiosmotic model. Protons from Photosystem II did not appear to be utilized differently from those derived from Photosystem I. The maximal phosphorylation efficiency (Pe2) for photophosphorylation in washed thylakoids under oxidizing conditions is likely to be 43. This value is consistent with a proton-to-electron-pair ratio of 4 for electron flow through both photosystems and a proton-to-ATP ratio of 3 for the chloroplast proton-ATPase.  相似文献   

16.
Constraint-based models of biochemical reaction networks require experimental validation to test model-derived hypotheses and iteratively improve the model. Physiological and proteomic analysis of Thermotoga neapolitana growth on cellotetraose was conducted to identify gene products related to growth on cellotetraose to improve a constraint-based model of T. neapolitana central carbon metabolism with incomplete cellotetraose pathways. In physiological experiments comparing cellotetraose to cellobiose and glucose as growth substrates, product formation yields on cellotetraose, cellobiose, and glucose were similar; however cell yields per mol carbon consumed were higher on cellotetraose than on cellobiose or glucose. Proteomic analysis showed increased expression of several proteins from cells grown on cellotetraose compared with glucose cell cultures, including cellobiose phosphorylase (CTN_0783), endo-1,4-β-glucosidase (CTN_1106), and an ATP-binding protein (CTN_1296). The CTN_1296 gene product should be evaluated further for participation in cellotetraose metabolism and is included as one of two hypothetical gene-protein-reaction associations in the T. neapolitana constraint-based model to reinstate cellotetraose metabolism in model simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号